Skip to ContentSkip to Navigation
Part of University of Groningen
Science LinXScience Linx News

New mechanism points the way to breaking ribosome antibiotic resistance

28 September 2017

University of Groningen scientists discovered how characeteristics of protein factories of the cell can lead to antbiotic resistance. The results are published on 28 September in Nature Communications.

Antibiotics are the most common medication used to treat microbial infections. Many antibiotics target intracellular bacterial ribosomes - cellular factories that synthesize proteins - which are essential for bacterial survival and proliferation. When bacteria have an excess of protein synthesis activity they stall the ribosomes in an inactive dimeric complex (i.e. two copies of ribosomes interact with each other). This so-called hibernating ribosome complex is more resistant to antibiotics.

In a collaborative effort, research groups from the Groningen Biomolecular Sciences and Biotechnology Institute of the University of Groningen led by Egbert Boekema, Bert Poolman and Albert Guskov revealed a novel mechanism of ribosome dimerization in the bacterium Lactococcus lactis using cryo-electron microscopy. The peculiarity of the mechanism they describe is that it involves a single protein, named HPFlong, which is capable to dimerize on its own and then pull two copies of ribosomes together. The dimeric state of the ribosome is no longer capable of synthesizing new proteins.

This hibernation mechanism is in a stark contrast with previous studies done in another microorganism, Escherichia coli. However based on a phylogenetic analysis of the amino acid sequence of HPFlong, the researchers conclude that the mechanism they propose is more widely spread, since protein HPFlong is present in nearly all known bacteria. This study provides the necessary structural basis to design new generations of antibiotics targeting hibernating ribosomes.

Reference: Franken et al: A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy. Nature Communications, 28 September 2017

Last modified:03 October 2017 11.32 a.m.

More news

  • 23 October 2019

    Heropening De Beurs; drie dagen feest RUG/Campus Fryslân

    Heropening De Beurs; drie dagen feest RUG/Campus Fryslân

  • 22 October 2019

    No arguing: it’s time to relax

    Thanks to the smartphone, these days we keep our work on the kitchen table or bedside table. The boundary between work and private life is steadily fading. This is a cause for concern, says Jessica de Bloom, who thinks that we should be using our leisure...

  • 11 October 2019

    Down Under with Top Dutch (update)

    After two years of hard work, the Groningen Top Dutch Solar Racing team has arrived in Australia. The team consists of students of the Hanze University of Applied Sciences, University of Groningen, and secondary vocational education (MBO) and is currently...