Skip to ContentSkip to Navigation
Research Host-microbe Interactions

Publications

2024

Dong, J., Bai, Y., Wang, Q., Chen, Q., Li, X., Wang, Y., Ji, H., Meng, X., Pijning, T., Svensson, B., Dijkhuizen, L., Abou Hachem, M., & Jin, Z. (2024). Insights into the Structure–Function Relationship of GH70 GtfB α-Glucanotransferases from the Crystal Structure and Molecular Dynamic Simulation of a Newly Characterized Limosilactobacillus reuteri N1 GtfB Enzyme. Journal of Agricultural and Food Chemistry, 72(10), 5391-5402. Article acs.jafc.4c00104. https://doi.org/10.1021/acs.jafc.4c00104
Li, Z., Waghmare, P. R., Dijkhuizen, L., Meng, X., & Liu, W. (2024). Research advances on the consolidated bioprocessing of lignocellulosic biomass. Engineering Microbiology, 4(2), Article 100139. https://doi.org/10.1016/j.engmic.2024.100139
Dong, J., Abou Hachem, M., Wang, Y., Li, X., Zhang, B., Pijning, T., Svensson, B., Dijkhuizen, L., Jin, Z., & Bai, Y. (2024). Tailor-Made α-Glucans by Engineering the Processivity of α-Glucanotransferases via Tunnel-Cleft Active Center Interconversions. Journal of Agricultural and Food Chemistry, Article jafc.4c01842. Advance online publication. https://doi.org/10.1021/acs.jafc.4c01842

2023

Fang, Y., Dong, M., van Leeuwen, S. S., Dijkhuizen, L., Meng, X., & Liu, W. (2023). Biochemical characterization of glycoside hydrolase family 31 α-glucosidases from Myceliophthora thermophila for α-glucooligosaccharide synthesis. International Journal of Biological Macromolecules, 252, Article 126452. https://doi.org/10.1016/j.ijbiomac.2023.126452
van der Toorn, M. V., Chatziioannou, A. C., Pellis, L., Haandrikman, A., van der Zee, L., & Dijkhuizen, L. (2023). Biological Relevance of Goat Milk Oligosaccharides to Infant Health. Journal of Agricultural and Food Chemistry, 71(38), 13935–13949. https://doi.org/10.1021/acs.jafc.3c02194
Li, X., Wang, Y., Wu, J., Jin, Z., Dijkhuizen, L., Svensson, B., & Bai, Y. (2023). Designing starch derivatives with desired structures and functional properties via rearrangements of glycosidic linkages by starch-active transglycosylases. Critical Reviews in Food Science and Nutrition, Article 2198604. Advance online publication. https://doi.org/10.1080/10408398.2023.2198604

2022

Li, X., Wang, Y., Wu, J., Jin, Z., Dijkhuizen, L., Hachem, M. A., & Bai, Y. (2023). Thermoproteus uzoniensis 4-α-glucanotransferase catalyzed production of a thermo-reversible potato starch gel with superior rheological properties and freeze-thaw stability. Food hydrocolloids, 134, Article 108026. https://doi.org/10.1016/j.foodhyd.2022.108026
Meng, X., Li, X., Pijning, T., Wang, X., van Leeuwen, S. S., Dijkhuizen, L., Chen, G., & Liu, W. (2022). Characterization of the (Engineered) Branching Sucrase GtfZ-CD2 from Apilactobacillus kunkeei for Efficient Glucosylation of Benzenediol Compounds. Applied and environmental microbiology, 88(16), Article e0103122. https://doi.org/10.1128/aem.01031-22
Pijning, T., Te Poele, E. M., de Leeuw, T. C., Guskov, A., & Dijkhuizen, L. (2022). Crystal Structure of 4,6-α-Glucanotransferase GtfC-ΔC from Thermophilic Geobacillus 12AMOR1: Starch Transglycosylation in Non-Permuted GH70 Enzymes. Journal of Agricultural and Food Chemistry, 70(48), 15283–15295. Article 2c06394. https://doi.org/10.1021/acs.jafc.2c06394
Dobruchowska, J. M., Bjornsdottir, B., Fridjonsson, O. H., Altenbuchner, J., Watzlawick, H., Gerwig, G. J., Dijkhuizen, L., Kamerling, J. P., & Hreggvidsson, G. O. (2022). Enzymatic depolymerization of alginate by two novel thermostable alginate lyases from Rhodothermus marinus. Frontiers in Plant Science , 13, Article 981602. https://doi.org/10.3389/fpls.2022.981602
Haandrikman, A. J., Happe, R. P., Pellis, E. P. M., Benjamins, F., Dijkhuizen, L., Chatziioannou, A. C., & van Leeuwen, S. S. (2022). Increased 2'-fl production by goats. (Patent No. WO2022123036).

2021

Li, X., Meng, X., de Leeuw, T. C., Te Poele, E. M., Pijning, T., Dijkhuizen, L., & Liu, W. (2023). Enzymatic glucosylation of polyphenols using glucansucrases and branching sucrases of glycoside hydrolase family 70. Critical Reviews in Food Science and Nutrition, 63(21), 5247–5267. Article 2016598. https://doi.org/10.1080/10408398.2021.2016598
Jiang, Y., Li, X., Pijning, T., Bai, Y., & Dijkhuizen, L. (2022). Mutations in Amino Acid Residues of Limosilactobacillus reuteri 121 GtfB 4,6-α-Glucanotransferase that Affect Reaction and Product Specificity. Journal of Agricultural and Food Chemistry, 70(6), 1952-1961. Article 1c07618. https://doi.org/10.1021/acs.jafc.1c07618
Figueroa Lozano, S., Akkerman, R., Beukema, M., van Leeuwen, S., Dijkhuizen, L., & de Vos, P. (2021). 2 '-Fucosyllactose impacts the expression of mucus-related genes in goblet cells and maintains barrier function of gut epithelial cells. Journal of Functional Foods, 85, 1-8. Article 104630. https://doi.org/10.1016/j.jff.2021.104630
Chatziioannou, A. C., Benjamins, E., Pellis, L., Haandrikman, A., Dijkhuizen, L., & van Leeuwen, S. S. (2021). Extraction and Quantitative Analysis of Goat Milk Oligosaccharides: Composition, Variation, Associations, and 2 '-FL Variability. Journal of Agricultural and Food Chemistry, 69(28), 7851-7862. https://doi.org/10.1021/acs.jafc.1c00499
Te Poele, E. M., Van Der Hoek, S. E., Chatziioannou, A. C., Gerwig, G. J., Duisterwinkel, W. J., Oudhuis, L. A. A. C. M., Gangoiti, J., Dijkhuizen, L., & Leemhuis, H. (2021). GtfC Enzyme of Geobacillus sp. 12AMOR1 Represents a Novel Thermostable Type of GH70 4,6-α-Glucanotransferase That Synthesizes a Linear Alternating (α1 → 6)/(α1 → 4) α-Glucan and Delays Bread Staling. Journal of Agricultural and Food Chemistry, 69(34), 9859-9868. https://doi.org/10.1021/acs.jafc.1c03475
Pijning, T., Gangoiti, J., Te Poele, E. M., Börner, T., & Dijkhuizen, L. (2021). Insights into Broad-Specificity Starch Modification from the Crystal Structure of Limosilactobacillus Reuteri NCC 2613 4,6-α-Glucanotransferase GtfB. Journal of Agricultural and Food Chemistry, 69(44), 13235-13245. Article 05657. https://doi.org/10.1021/acs.jafc.1c05657
Valk-Weeber, R. L., Nichols, K., Dijkhuizen, L., Bijl, E., & van Leeuwen, S. S. (2021). Variations in N-linked glycosylation of glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1) whey protein: Intercow differences and dietary effects. Journal of dairy science, 104(4), 5056-5068. https://doi.org/10.3168/jds.2020-19297

2020

Hartman, A. M., Jumde, V. R., Elgaher, W. A. M., Te Poele, E. M., Dijkhuizen, L., & Hirsch, A. K. H. (2021). Potential Dental Biofilm Inhibitors: Dynamic Combinatorial Chemistry Affords Sugar-Based Molecules that Target Bacterial Glucosyltransferase. ChemMedChem, 16(1), 113-123. Article cmdc.202000222. https://doi.org/10.1002/cmdc.202000222
Te Poele, E., Corwin, S., Hamaker, B. R., Lamothe, L., Vafeiadi, C., & Dijkhuizen, L. (2020). Development of Slowly Digestible Starch Derived α-Glucans with 4,6-α-Glucanotransferase and Branching Sucrase Enzymes. Journal of Agricultural and Food Chemistry, 68(24), 6664-6671. Article acs.jafc.0c01465. https://doi.org/10.1021/acs.jafc.0c01465
Knight, J., Branneby, C. K., Dijkhuizen, L., Petrusma, M., & Fernández de las Heras, L. (2020). Genetically-modified bacteria and uses thereof. (Patent No. WO2020030799).
van Leeuwen, S. S., Te Poele, E. M., Chatziioannou, A. C., Benjamins, E., Haandrikman, A., & Dijkhuizen, L. (2020). Goat Milk Oligosaccharides: Their Diversity, Quantity, and Functional Properties in Comparison to Human Milk Oligosaccharides. Journal of Agricultural and Food Chemistry, 68(47), 13469-13485. https://doi.org/10.1021/acs.jafc.0c03766
Valk-Weeber, R. L., Deelman-Driessen, C., Dijkhuizen, L., Eshuis-de Ruiter, T., & van Leeuwen, S. (2020). In depth analysis of the contribution of specific glycoproteins to the overall bovine whey N-linked glycoprofile. Journal of Agricultural and Food Chemistry, 68(24), 6544-6553. Article acs.jafc.0c00959. https://doi.org/10.1021/acs.jafc.0c00959
Figueroa-Lozano, S., Valk-Weeber, R. L., Akkerman, R., Abdulahad, W., van Leeuwen, S. S., Dijkhuizen, L., & de Vos, P. (2020). Inhibitory Effects of Dietary N-Glycans From Bovine Lactoferrin on Toll-Like Receptor 8; Comparing Efficacy With Chloroquine. Frontiers in Immunology, 11, Article 790. https://doi.org/10.3389/fimmu.2020.00790
Valk-Weeber, R. L., Eshuis-de Ruiter, T., Dijkhuizen, L., & van Leeuwen, S. S. (2020). Quantitative analysis of bovine whey glycoproteins using the overall N-linked whey glycoprofile. International Dairy Journal, 110, Article 104814. https://doi.org/10.1016/j.idairyj.2020.104814
Kittibunchakul, S., van Leeuwen, S. S., Dijkhuizen, L., Haltrich, D., & Thu-Ha Nguyen (2020). Structural Comparison of Different Galacto-oligosaccharide Mixtures Formed by beta-Galactosidases from Lactic Acid Bacteria and Bifidobacteria. Journal of Agricultural and Food Chemistry, 68(15), 4437-4446. https://doi.org/10.1021/acs.jafc.9b08156
Li, X., Wang, X., Meng, X., Dijkhuizen, L., & Liu, W. (2020). Structures, physico-chemical properties, production and (potential) applications of sucrose-derived α-d-glucans synthesized by glucansucrases. Carbohydrate Polymers, 249, Article 116818. https://doi.org/10.1016/j.carbpol.2020.116818
Figueroa-Lozano, S., Ren, C., Yin, H., Pham, H., van Leeuwen, S., Dijkhuizen, L., & de Vos, P. (2020). The impact of oligosaccharide content, glycosidic linkages and lactose content of galacto-oligosaccharides (GOS) on the expression of mucus-related genes in goblet cells. Food & Function, 11(4), 3506-3515. https://doi.org/10.1039/d0fo00064g

2019

Valk-Weeber, R. L., Eshuis-de Ruiter, T., Dijkhuizen, L., & van Leeuwen, S. S. (2020). Dynamic temporal variations in bovine lactoferrin glycan structures. Journal of Agricultural and Food Chemistry, 68(2), 549-560. Article acs.jafc.9b06762. https://doi.org/10.1021/acs.jafc.9b06762
Valk-Weeber, R. L., Dijkhuizen, L., & van Leeuwen, S. S. (2019). Large-scale quantitative isolation of pure protein N-linked glycans. Carbohydrate Research, 479, 13-22. https://doi.org/10.1016/j.carres.2019.04.011
Böger, M., Hekelaar, J., van Leeuwen, S. S., Dijkhuizen, L., & Lammerts van Bueren, A. (2019). Structural and functional characterization of a family GH53 β-1,4-galactanase from Bacteroides thetaiotaomicron that facilitates degradation of prebiotic galactooligosaccharides. Journal of Structural Biology, 205(1), 1-10. Article j.jsb.2018.12.002. https://doi.org/10.1016/j.jsb.2018.12.002
Boger, M., van Leeuwen, S. S., van Bueren, A. L., & Dijkhuizen, L. (2019). Structural Identity of Galactooligosaccharide Molecules Selectively Utilized by Single Cultures of Probiotic Bacterial Strains. Journal of Agricultural and Food Chemistry, 67(50), 13969-13977. https://doi.org/10.1021/acs.jafc.9b05968
Pham, H., Ten Kate, G. A., Dijkhuizen, L., & van Leeuwen, S. S. (2019). Synthesis and characterization of sialylated lactose- and lactulose-derived oligosaccharides by Trypanosoma cruzi trans-sialidase. Journal of Agricultural and Food Chemistry, 67(12), 3469–3479. https://doi.org/10.1021/acs.jafc.8b06974
Devlamynck, T., Te Poele, E. M., Quataert, K., Gerwig, G. J., Van de Walle, D., Dewettinck, K., Kamerling, J. P., Soetaert, W., & Dijkhuizen, L. (2019). Trans-α-glucosylation of stevioside by the mutant glucansucrase enzyme Gtf180-ΔN-Q1140E improves its taste profile. Food Chemistry, 272, 653-662. https://doi.org/10.1016/j.foodchem.2018.08.025

2018

Gangoiti, J., Corwin, S. F., Lamothe, L. M., Vafiadi, C., Hamaker, B. R., & Dijkhuizen, L. (2020). Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. Critical Reviews in Food Science and Nutrition, 60(1), 123-146. https://doi.org/10.1080/10408398.2018.1516621
Pham, H. T. T., Boger, M. C. L., Dijkhuizen, L., & van Leeuwen, S. S. (2019). Stimulatory effects of novel glucosylated lactose derivatives GL34 on growth of selected gut bacteria. Applied Microbiology and Biotechnology, 103(2), 707-718. https://doi.org/10.1007/s00253-018-9473-8
Meng, X., Gangoiti, J., Wang, X., Grijpstra, P., van Leeuwen, S. S., Pijning, T., & Dijkhuizen, L. (2018). Biochemical characterization of a GH70 protein from Lactobacillus kunkeei DSM 12361 with two catalytic domains involving branching sucrase activity. Applied Microbiology and Biotechnology, 102(18), 7935-7950. https://doi.org/10.1007/s00253-018-9236-6
Meng, X., Gangoiti, J., de Kok, N., van Leeuwen, S. S., Pijning, T., & Dijkhuizen, L. (2018). Biochemical characterization of two GH70 family 4,6-α-glucanotransferases with distinct product specificity from Lactobacillus aviarius subsp. aviarius DSM 20655. Food Chemistry, 253, 236-246. Article j.foodchem.2018.01.154. https://doi.org/10.1016/j.foodchem.2018.01.154
Gangoiti Muñecas, J., van Leeuwen, S. S., Pijning, T., Dijkhuizen, L., Vafeiadi, C., & Duboux, S. (2018). Branched alpha glucans. (Patent No. WO2018167032). https://nl.espacenet.com/publicationDetails/originalDocument?CC=WO&NR=2018167032A1&KC=A1&FT=D&ND=3&date=20180920&DB=&locale=nl_NL
Boger, M. C. L., van Bueren, A. L., & Dijkhuizen, L. (2018). Cross-Feeding among Probiotic Bacterial Strains on Prebiotic Inulin Involves the Extracellular exo-Inulinase of Lactobacillus paracasei Strain W20. Applied and environmental microbiology, 84(21), Article e01539-18. https://doi.org/10.1128/AEM.01539-18
Te Poele, E. M., Devlamynck, T., Jäger, M., Gerwig, G. J., Van de Walle, D., Dewettinck, K., Hirsch, A. K. H., Kamerling, J. P., Soetaert, W., & Dijkhuizen, L. (2018). Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste. Scientific Reports, 8(1), Article 1516. https://doi.org/10.1038/s41598-018-19622-5
Pham, H., Pijning, T., Dijkhuizen, L., & van Leeuwen, S. S. (2018). Mutational Analysis of the Role of the Glucansucrase Gtf180-Delta N Active Site Residues in Product and Linkage Specificity with Lactose as Acceptor Substrate. Journal of Agricultural and Food Chemistry, 66(47), 12544-12554. Article acs.jafc.8b04486. https://doi.org/10.1021/acs.jafc.8b04486
Lammerts van Bueren-Brandt, A., & Dijkhuizen, L. (2018). Prebiotic branched galacto-oligosaccharides (gos). (Patent No. WO2018048305). https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=WO&NR=2018048305A1&KC=A1&FT=D&ND=3&date=20180315&DB=&locale=en_EP
van Leeuwen, S. S., Stoutjesdijk, E., ten Kate, G. A., Schaafsma, A., Dijck-Brouwer, J., Muskiet, F. A. J., & Dijkhuizen, L. (2018). Regional variations in human milk oligosaccharides in Vietnam suggest FucTx activity besides FucT2 and FucT3. Scientific Reports, 8(1), Article 16790. https://doi.org/10.1038/s41598-018-34882-x
Pham, H. T., Dijkhuizen, L., & van Leeuwen, S. S. (2018). Structural characterization of glucosylated GOS derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes. Carbohydrate Research, 470, 57-63. https://doi.org/10.1016/j.carres.2018.10.003
Yin, H., Dijkhuizen, L., & van Leeuwen, S. (2018). Synthesis of galacto-oligosaccharides derived from lactulose by wild-type and mutant β-galactosidase enzymes from Bacillus circulans ATCC 31382. Carbohydrate Research, 465, 58-65. Article j.carres.2018.06.009. https://doi.org/10.1016/j.carres.2018.06.009

2017

Gangoiti, J., Pijning, T., & Dijkhuizen, L. (2018). Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose. Biotechnology Advances, 36, 196-207. https://doi.org/10.1016/j.biotechadv.2017.11.001
Figueroa-Lozano, S., Valk-Weeber, R. L., van Leeuwen, S. S., Dijkhuizen, L., & de Vos, P. (2018). Dietary N-glycans from Bovine Lactoferrin and TLR Modulation. Molecular Nutrition & Food Research, 62(2), Article 1700389. https://doi.org/10.1002/mnfr.201700389
Montersino, S., te Poele, E., Orru, R., Westphal, A. H., Barendregt, A., Heck, A. J. R., van der Geize, R., Dijkhuizen, L., Mattevi, A., & van Berkel, W. J. H. (2017). 3-Hydroxybenzoate 6-Hydroxylase from Rhodococcus jostii RHA1 Contains a Phosphatidylinositol Cofactor. Frontiers in Microbiology, 8, 1-11. Article 1110. https://doi.org/10.3389/fmicb.2017.01110
Gangoiti Muñecas, J., van Leeuwen, S. S., Gerwig, G. J., Duboux, S., Vafiadi, C., Pijning, T., & Dijkhuizen, L. (2017). 4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H. Scientific Reports, 7, 1-15. Article 39761. https://doi.org/10.1038/srep39761
Dijkhuizen, L., Gangoiti Muñecas, J., van Leeuwen, S. S., Vafeiadi, C., & Duboux, S. (2017). Alpha glucans. (Patent No. WO2017207663). https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=WO&NR=2017207663A1&KC=A1&FT=D&ND=3&date=20171207&DB=&locale=en_EP
Sarian, F. D., Janeček, Š., Pijning, T., Ihsanawati, Nurachman, Z., Radjasa, O. K., Dijkhuizen, L., Natalia, D., & van der Maarel, M. J. E. C. (2017). A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad. Scientific Reports, 7, Article 44230. https://doi.org/10.1038/srep44230
Yin, H., Pijning, T., Meng, X., Dijkhuizen, L., & van Leeuwen, S. S. (2017). Biochemical characterization of the functional roles of residues in the active site of the β-galactosidase from Bacillus circulans ATCC 31382. Biochemistry, 56(24), 3109-3118. https://doi.org/10.1021/acs.biochem.7b00207
Gangoiti Muñecas, J., van Leeuwen, S. S., Dijkhuizen, L., Vafeiadi, C., & Lamothe, L. (2017). Branched alpha glucans. (Patent No. WO2017046040). https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=WO&NR=2017046040A1&KC=A1&FT=D&ND=3&date=20170323&DB=&locale=en_EP
te Poele, E. M., Valk, V., Devlamynck, T., van Leeuwen, S. S., & Dijkhuizen, L. (2017). Catechol glucosides act as donor/acceptor substrates of glucansucrase enzymes of Lactobacillus reuteri. Applied Microbiology and Biotechnology, 101(11), 4495-4505. https://doi.org/10.1007/s00253-017-8190-z
Meng, X., Pijning, T., Tietema, M., Dobruchowska, J. M., Yin, H., Gerwig, G. J., Kralj, S., & Dijkhuizen, L. (2017). Characterization of the glucansucrase GTF180 W1065 mutant enzymes producing polysaccharides and oligosaccharides with altered linkage composition. Food Chemistry, 217, 81-90. https://doi.org/10.1016/j.foodchem.2016.08.087
Gangoiti, J., Lamothe, L., van Leeuwen, S. S., Vafiadi, C., & Dijkhuizen, L. (2017). Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4,6-α-glucanotransferase enzymes. PLoS ONE, 12(4), Article e0172622. https://doi.org/10.1371/journal.pone.0172622
Gangoiti Muñecas, J., Meng, X., Lamerts van Bueren, A., & Dijkhuizen, L. (2017). Draft Genome Sequence of Lactobacillus reuteri 121, a Source of α-Glucan and β-Fructan Exopolysaccharides. Genome Announcements, 5(10), 1-2. Article e01691-16. https://doi.org/10.1128/genomeA.01691-16
Yin, H., Pijning, T., Meng, X., Dijkhuizen, L., & van Leeuwen, S. S. (2017). Engineering of the Bacillus circulans β-galactosidase product specificity. Biochemistry, 56(5), 704-711. https://doi.org/10.1021/acs.biochem.7b00032
Ceniceros, A., Dijkhuizen, L., Petrusma, M., & Medema, M. H. (2017). Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics, 18(1), 1-16. Article 593. https://doi.org/10.1186/s12864-017-3966-1
Gangoiti, J., van Leeuwen, S. S., Meng, X., Duboux, S., Vafiadi, C., Pijning, T., & Dijkhuizen, L. (2017). Mining novel starch-converting Glycoside Hydrolase 70 enzymes from the Nestlé Culture Collection genome database: The Lactobacillus reuteri NCC 2613 GtfB. Scientific Reports, 7(1), Article 9947. https://doi.org/10.1038/s41598-017-07190-z
Frasch, H.-J., Leeuwen, S. S. V., & Dijkhuizen, L. (2017). Molecular and biochemical characteristics of the inulosucrase HugO from Streptomyces viridochromogenes DSM40736 (Tü494). Microbiology-Reading, 163(7), 1030-1041. https://doi.org/10.1099/mic.0.000493
Ceniceros, A., Dijkhuizen, L., & Petrusma, M. (2017). Molecular characterization of a Rhodococcus jostii RHA1 γ-butyrolactone(-like) signalling molecule and its main biosynthesis gene gblA. Scientific Reports, 7(1), 1-13. Article 17743. https://doi.org/10.1038/s41598-017-17853-6
Lammerts van Bueren, A., Mulder, M., Leeuwen, S. V., & Dijkhuizen, L. (2017). Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron. Scientific Reports, 7, 1-13. Article 40478. https://doi.org/10.1038/srep40478
Yin, H., Bultema, J. B., Dijkhuizen, L., & van Leeuwen, S. S. (2017). Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chemistry, 225, 230-238. Article j.foodchem.2017.01.030. https://doi.org/10.1016/j.foodchem.2017.01.030
Gerwig, G. J., Te Poele, E. M., Dijkhuizen, L., & Kamerling, J. P. (2017). Structural analysis of rebaudioside A derivatives obtained by Lactobacillus reuteri 180 glucansucrase-catalyzed trans-α-glucosylation. Carbohydrate Research, 440-441, 51-62. https://doi.org/10.1016/j.carres.2017.01.008
Pham, H. T. T., Dijkhuizen, L., & van Leeuwen, S. S. (2017). Structural characterization of glucosylated lactose derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes. Carbohydrate Research, 449, 59-64. https://doi.org/10.1016/j.carres.2017.07.002

2016

Bai, Y., Gangoiti , J., Dijkstra, B. W., Dijkhuizen, L., & Pijning, T. (2017). Crystal Structure of 4,6-α-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from α-Amylases in Oral Bacteria. Structure, 25(2), 231-242. https://doi.org/10.1016/j.str.2016.11.023
Valk, V., Lammerts van Bueren, A., van der Kaaij, R. M., & Dijkhuizen, L. (2016). Carbohydrate Binding Module 74 is a novel starch binding domain associated with large and multi-domain α-amylase enzymes. Febs Journal, 283(12), 2354-2368. Article 13745. https://doi.org/10.1111/febs.13745
Valk, V., van der Kaaij, R. M., & Dijkhuizen, L. (2016). Characterization of the starch-acting MaAmyB enzyme from Microbacterium aurum B8.A representing the novel subfamily GH13_42 with an unusual, multi-domain organization. Scientific Reports, 6, 1-12. Article srep36100. https://doi.org/10.1038/srep36100
van Leeuwen, S. S., Kuipers, B. J. H., Dijkhuizen, L., & Kamerling, J. P. (2016). Comparative structural characterization of 7 commercial galacto-oligosaccharide (GOS) products. Carbohydrate Research, 425, 48-58. https://doi.org/10.1016/j.carres.2016.03.006
van Leeuwen, S. S., Kuipers, B. J. H., Dijkhuizen, L., & Kamerling, J. P. (2016). Corrigendum to “1H NMR analysis of the lactose/β-galactosidase-derived galacto-oligosaccharide components of Vivinal® GOS up to DP5” [Carbohydr. Res. 400 (2014) 59–73]. Carbohydrate Research, 419, 69-70. https://doi.org/10.1016/j.carres.2015.12.004
Pijning, T., Bai, Y., Gangoiti Muñecas, J., & Dijkhuizen, L. (2016). Crystal Structure of a 4,6-α-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from α-Amylases in Oral Bacteria. Poster session presented at ALAMY, Smolenice, Slovakia.
Figueroa, S., Dijkhuizen, L., Valk, R., van Leeuwen, S., & de Vos, P. (2016). Dietary N- and O-glycans from cow milk and TLR modulation. European Journal of Immunology, 46, 479-479.
Devlamynck, T., Te Poele, E. M., Meng, X., van Leeuwen, S. S., & Dijkhuizen, L. (2016). Glucansucrase Gtf180-Delta N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules. Applied Microbiology and Biotechnology, 100(17), 7529-7539. https://doi.org/10.1007/s00253-016-7476-x
Te Poele, E. M., Grijpstra, P., van Leeuwen, S. S., & Dijkhuizen, L. (2016). Glucosylation of catechol with the GTFA glucansucrase enzyme from Lactobacillus reuteri and sucrose as donor substrate. BIOCONJUGATE CHEMISTRY, 27(4), 937-946. https://doi.org/10.1021/acs.bioconjchem.6b00018
Bai, Y., Böger, M., van der Kaaij, R. M., Woortman, A. J. J., Pijning, T., van Leeuwen, S. S., Lammerts van Bueren, A., & Dijkhuizen, L. (2016). Lactobacillus reuteri strains convert starch and maltodextrins into homo-exopolysaccharides using an extracellular and cell-associated 4,6-α-glucanotransferase. Journal of Agricultural and Food Chemistry, 64(14), 2941-2952. https://doi.org/10.1021/acs.jafc.6b00714
te Poele, E. M., Dijkhuizen, L., Gerwig, G. J., & Kamerling, J. P. (2016). Methods for the enzymatic modification of steviol glycosides, modified steviol glycosides obtainable thereby, and the use thereof as sweeteners. (Patent No. WO2016144175). https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=WO&NR=2016144175A1&KC=A1&FT=D&ND=3&date=20160915&DB=EPODOC&locale=en_EP
Dobruchowska, J. M., Jonsson, J. O., Fridjonsson, O. H., Aevarsson, A., Kristjansson, J. K., Altenbuchner, J., Watzlawick, H., Gerwig, G. J., Dijkhuizen, L., Kamerling, J. P., & Hreggvidsson, G. O. (2016). Modification of linear (β1→3)-linked gluco-oligosaccharides with a novel recombinant β-glucosyltransferase (trans-β-glucosidase) enzyme from Bradyrhizobium diazoefficiens. Glycobiology, 26(11), 1157-1170. https://doi.org/10.1093/glycob/cww074
Gerwig, G. J., Te Poele, E. M., Dijkhuizen, L., & Kamerling, J. P. (2016). Stevia Glycosides: Chemical and Enzymatic Modifications of Their Carbohydrate Moieties to Improve the Sweet-Tasting Quality. Advances in carbohydrate chemistry and biochemistry, 73, 1-72. https://doi.org/10.1016/bs.accb.2016.05.001
Bai, Y., Dobruchowska, J. M., van der Kaaij, R. M., Gerwig, G. J., & Dijkhuizen, L. (2016). Structural basis for the roles of starch and sucrose in homo-exopolysaccharide formation by Lactobacillus reuteri 35-5. Carbohydrate Polymers, 151, 29-39. https://doi.org/10.1016/j.carbpol.2016.05.048
Meng, X., Pijning, T., Dobruchowska, J. M., Yin, H., Gerwig, G. J., & Dijkhuizen, L. (2016). Structural determinants of alternating (α1 → 4) and (α1 → 6) linkage specificity in reuteransucrase of Lactobacillus reuteri. Scientific Reports, 6, Article 35261. https://doi.org/10.1038/srep35261
Meng, X., Gangoiti, J., Bai, Y., Pijning, T., Van Leeuwen, S. S., & Dijkhuizen, L. (2016). Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cellular and molecular life sciences, 73(14), 2681-2706. https://doi.org/10.1007/s00018-016-2245-7
Gangoiti, J., van Leeuwen, S. S., Vafiadi, C., & Dijkhuizen, L. (2016). The gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-α-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch. Biochimica et biophysica acta, 1860(6), 1224-1236. https://doi.org/10.1016/j.bbagen.2016.02.005

2015

Meng, X., Dobruchowska, J. M., Pijning, T., Gerwig, G. J., & Dijkhuizen, L. (2016). Synthesis of New Hyper-Branched α-Glucans from Sucrose by Lactobacillus reuteri 180 Glucansucrase Mutants. Journal of Agricultural and Food Chemistry, 64(2), 433-442. https://doi.org/10.1021/acs.jafc.5b05161
Paul, C. J., Leemhuis, H., Dobruchowska, J. M., Grey, C., Onnby, L., van Leeuwen, S. S., Dijkhuizen, L., & Karlsson, E. N. (2015). A GH57 4-alpha-glucanotransferase of hyperthermophilic origin with potential for alkyl glycoside production. Applied Microbiology and Biotechnology, 99(17), 7101-7113. https://doi.org/10.1007/s00253-015-6435-2
Bai, Y., van der Kaaij, R. M., Leemhuis, H., Pijning, T., van Leeuwen, S. S., Jin, Z., & Dijkhuizen, L. (2015). Biochemical characterization of Lactobacillus reuteri Glycoside Hydrolase family 70 GTFB type of 4,6-α-Glucanotransferase enzymes that synthesize soluble dietary starch fibers. Applied and environmental microbiology, 81(20), 7223-7232. https://doi.org/10.1128/AEM.01860-15
Bai, Y., van der Kaaij, R. M., Woortman, A. J. J., Jin, Z., & Dijkhuizen, L. (2015). Characterization of the 4,6-α-glucanotransferase GTFB enzyme of Lactobacillus reuteri 121 isolated from inclusion bodies. BMC Biotechnology, 15, Article 49. https://doi.org/10.1186/s12896-015-0163-7
Meng, X., Pijning, T., Dobruchowska, J. M., Gerwig, G. J., & Dijkhuizen, L. (2015). Characterization of the functional roles of amino acid residues in acceptor binding subsite +1 in the active site of the glucansucrase GTF180 enzyme of Lactobacillus reuteri 180. The Journal of Biological Chemistry, 290(50), 30131-30141. https://doi.org/10.1074/jbc.M115.687558
van Munster, J. M., Dobruchowska, J. M., Veloo, R., Dijkhuizen, L., & van der Maarel, M. J. E. C. (2015). Characterization of the starvation-induced chitinase CfcA and α-1,3-glucanase AgnB of Aspergillus niger. Applied Microbiology and Biotechnology, 99, 2209-2223. https://doi.org/10.1007/s00253-014-6062-3
Valk, V., Eeuwema, W., Sarian, F. D., van der Kaaij, R. M., & Dijkhuizen, L. (2015). Degradation of granular starch by the bacterium Microbacterium aurum B8.A involves a novel modular α-amylase enzyme system with FNIII and CBM25 domains. Applied and environmental microbiology, 81(19), 6610-6620. https://doi.org/10.1128/AEM.01029-15
Lammerts van Bueren, A., Saraf, A., Martens, E. C., & Dijkhuizen, L. (2015). Differential metabolism of Exopolysaccharides from probiotic Lactobacilli by the human gut symbiont Bacteroides thetaiotaomicron. Applied and environmental microbiology, 81(12), 3973-3983. https://doi.org/10.1128/AEM.00149-15
Wilbrink, M. H., Ten Kate, G. A., Sanders, P., Gerwig, G. J., van Leeuwen, S. S., Sallomons, E., Klarenbeek, B., Hage, J. H., van Vuure, C. A., Dijkhuizen, L., & Kamerling, J. P. (2015). Enzymatic Decoration of Prebiotic Galacto-oligosaccharides (Vivinal® GOS) with Sialic Acid using Trypanosoma cruzi Trans-Sialidase and Two Bovine Sialoglycoconjugates as Donor Substrates. Journal of Agricultural and Food Chemistry, 63(25), 5976-5984. https://doi.org/10.1021/acs.jafc.5b01505
van Munster, J. M., Sanders, P., ten Kate, G. A., Dijkhuizen, L., & van der Maarel, M. J. E. C. (2015). Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides. Carbohydrate Research, 407, 73-78. https://doi.org/10.1016/j.carres.2015.01.014
Aalbers, F., Turkenburg, J. P., Davies, G. J., Dijkhuizen, L., & Lammerts van Bueren, A. (2015). Structural and Functional Characterization of a Novel Family GH115 4-O-Methyl-α-Glucuronidase with Specificity for Decorated Arabinogalactans. Journal of Molecular Biology, 427(24), 3935-3946. https://doi.org/10.1016/j.jmb.2015.07.006
Meng, X., Dobruchowska, J. M., Gerwig, G. J., Kamerling, J. P., & Dijkhuizen, L. (2015). Synthesis of oligo- and polysaccharides by Lactobacillus reuteri 121 reuteransucrase at high concentrations of sucrose. Carbohydrate Research, 414, 85-92. https://doi.org/10.1016/j.carres.2015.07.011
van Munster, J. M., Nitsche, B. M., Akeroyd, M., Dijkhuizen, L., van der Maarel, M. J. E. C., & Ram, A. F. J. (2015). Systems Approaches to Predict the Functions of Glycoside Hydrolases during the Life Cycle of Aspergillus niger Using Developmental Mutants ∆brlA and ∆flbA. PLoS ONE, 10(1), Article e0116269. https://doi.org/10.1371/journal.pone.0116269
Gangoiti, J., Pijning, T., & Dijkhuizen, L. (2015). The Exiguobacterium sibiricum 255-15 GtfC enzyme representing a novel glycoside hydrolase 70 subfamily of 4,6-α-glucanotransferase enzymes. Applied and environmental microbiology, 82(2), 756-766. Article AEM.03420-15. https://doi.org/10.1128/AEM.03420-15
Meng, X., Dobruchowska, J. M., Pijning, T., Gerwig, G. J., Kamerling, J. P., & Dijkhuizen, L. (2015). Truncation of domain V of the multidomain glucansucrase GTF180 of Lactobacillus reuteri 180 heavily impairs its polysaccharide-synthesizing ability. Applied Microbiology and Biotechnology, 99(14), 5885-5894. https://doi.org/10.1007/s00253-014-6361-8

2014

Venkataraman, H., Te Poele, E. M., Rosłoniec, K. Z., Vermeulen, N., Commandeur, J. N. M., van der Geize, R., & Dijkhuizen, L. (2015). Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme. Applied Microbiology and Biotechnology, 99(11), 4713-4721. https://doi.org/10.1007/s00253-014-6281-7
Last modified:09 June 2023 8.36 p.m.