Skip to ContentSkip to Navigation
Part of University of Groningen
Science LinX Science Linx News

Suspended layers make a special superconductor

05 November 2019

In superconducting materials, an electric current will flow without any resistance. There are quite a few practical applications of this phenomenon; however, many fundamental questions remain as yet unanswered. Associate Professor Justin Ye, head of the Device Physics of Complex Materials group at the University of Groningen, studied superconductivity in a double layer of molybdenum disulfide and discovered new superconducting states. The results were published in the journal Nature Nanotechnology on 4 November.

Superconductivity has been shown in monolayer crystals of, for example, molybdenum disulphide or tungsten disulfide that have a thickness of just three atoms. ‘In both monolayers, there is a special type of superconductivity in which an internal magnetic field protects the superconducting state from external magnetic fields,’ Ye explains. Normal superconductivity disappears when a large external magnetic field is applied, but this Ising superconductivity is strongly protected. Even in the strongest static magnetic field in Europe, which has a strength of 37 Tesla, the superconductivity in tungsten disulfide does not show any change. However, although it is great to have such strong protection, the next challenge is to find a way to control this protective effect, by applying an electric field.

Justin Ye | Photo Sylvia Germes
Justin Ye | Photo Sylvia Germes

Ionic liquid

Ye and his collaborators studied a double layer of molybdenum disulfide: ‘In that configuration, the interaction between the two layers creates new superconducting states.’ Ye created a suspended double layer, with an ionic liquid on both sides that can be used to create an electric field across the bilayer. ‘In the individual monolayer, such a field will be asymmetric, with positive ions on one side and negative charges induced on the other. However, in the bilayer, we can have the same amount of charge induced at both monolayers, creating a symmetrical system,’ Ye explains. The electric field that was thus created could be used to switch superconductivity on and off. This means that a superconducting transistor was created that could be gated through the ionic liquid.

In the double layer, the Ising protection against external magnetic fields disappears. ‘This happens because of changes in the interaction between the two layers.’ However, the electric field can restore the protection. ‘The level of protection becomes a function of how strongly you gate the device.’

This is a schematic (top) and SEM picture (bottom) of the suspended double layer of molybdenum disulfide with ionic liquid gating. | Justin Ye group, Zernike Institute for Advanced Materials, University of Groningen
This is a schematic (top) and SEM picture (bottom) of the suspended double layer of molybdenum disulfide with ionic liquid gating. | Justin Ye group, Zernike Institute for Advanced Materials, University of Groningen

Conceptual changes

Apart from creating a superconducting transistor, Ye and his colleagues made another intriguing observation. In 1964, a special superconducting state was predicted to exist, called the FFLO state (named after the scientists who predicted it: Fulde, Ferrell, Larkin and Ovchinnikov). In superconductivity, electrons travel in pairs in opposite directions. Since they travel at the same speed, these Cooper pairs have a total kinetic momentum of zero. But in the FFLO state, there is a small speed difference and therefore the kinetic momentum is not zero. So far, this state has never been properly studied in experiments.

‘We’ve met nearly all the prerequisites to prepare the FFLO state in our device,’ says Ye. ‘But the state is very fragile and is significantly affected by contaminations on the surface of our material. We will therefore need to repeat the experiments with cleaner samples.’ With the suspended bilayer of molybdenum disulfide, Ye and collaborators have all the ingredients needed to study some special superconducting states. ‘This is truly fundamental science that might bring us conceptual changes.’

Reference: O. Zheliuk, J. M. Lu, Q. H. Chen, A. A. El Yumin, S. Golightly & J. T. Ye: Josephson coupled Ising pairing induced in suspended MoS2 bilayers by double-side ionic gating. Nature Nanotechnology 4 November 2019

Last modified:07 November 2019 11.36 a.m.
View this page in: Nederlands

More news

  • 16 April 2024

    UG signs Barcelona Declaration on Open Research Information

    In a significant stride toward advancing responsible research assessment and open science, the University of Groningen has officially signed the Barcelona Declaration on Open Research Information.

  • 02 April 2024

    Flying on wood dust

    Every two weeks, UG Makers puts the spotlight on a researcher who has created something tangible, ranging from homemade measuring equipment for academic research to small or larger products that can change our daily lives. That is how UG...

  • 18 March 2024

    VentureLab North helps researchers to develop succesful startups

    It has happened to many researchers. While working, you suddenly ask yourself: would this not be incredibly useful for people outside of my own research discipline? There are many ways to share the results of your research. For example, think of a...