Skip to ContentSkip to Navigation
Over ons Actueel Nieuws Nieuwsberichten

Advanced methods for prototype-based classification

14 juni 2010

Promotie: mw. P. Schneider, 14.45 uur, Academiegebouw, Broerstraat 5, Groningen

Proefschrift: Advanced methods for prototype-based classification

Promotor(s): prof.dr. M. Biehl, prof.dr. N. Petkov

Faculteit: Wiskunde en Natuurwetenschappen

 

Lerende vectorkwantisatie

Petra Schneider deed onderzoek naar lerende vectorkwantisatie (Learning Vector Quantization, LVQ). Dit is een simpele en intuïtieve techniek: LVQ-algoritmen leren prototype-vectoren voor de verschillende klassen in een gegeven dataset. De prototypen worden gebruikt voor een classificatie die gebaseerd is op afstand. Dit houdt in dat een patroon wordt toegekend aan de klasse die gerepresenteerd wordt door het dichtstbijzijnde prototype, gebruikmakend van een bepaalde afstandsmaat.

Dit proefschrift behandelt twee punten: ten eerste wordt een nieuwe methodiek voor het aanpassen van de metriek in LVQ gepresenteerd en ten tweede worden wijzigingen van een specifiek leeralgoritme, namelijk robuuste zachte LVQ, geïntroduceerd.

Technieken om de metriek te wijzigen bieden de mogelijkheid om probleemspecifieke afstandsmaten te leren uit de trainingsdata. Aangezien de beslissing van de classificator afhangt van de afstanden tussen prototypen en featurevectoren, is de gekozen metriek een belangrijke sleutel voor de nauwkeurigheid van de LVQ. Schneider breidt de Euclidische afstand uit met een matrix met adaptieve gewichten. De diagonale elementen van de matrix kwantificeren de noodzaak van de individuele features voor classificatie, terwijl de buitendiagonale elementen corresponderen met de relevantie van paren van features in het classificatieschema.

De geavanceerde metriek wordt praktisch toegepast. Schneider toont aan dat het de potentie heeft om de classificatie van de toegepaste algoritmen significant te verbeteren. Ook geven de metriekparameters inzicht in de aard van de data. Ook wordt het convergentiegedrag van de trainingsalgoritmen theoretisch geanalyseerd.

Drie wijzigingen van robuuste zachte LVQ worden voorgesteld: de behandeling van de hyperparameter van het algoritme, de beslissingsregel voor classificatie en de generalisatie van het algoritme in relatie tot vectoriale klassetoewijzing in de invoerdata. De methoden worden geïllustreerd door praktische experimenten.

Petra Schneider (Duitsland, 1980) studeerde aan de universiteit van Bielefeld. Het onderzoek werd uitgevoerd aan het Johann Bernoulli Institute for Mathematics an Computer Science. Schneider gaat als postdoc aan de Medical School van de University of Birmingham.

Laatst gewijzigd:13 maart 2020 01:13
View this page in: English

Meer nieuws

  • 05 september 2024

    ERC Starting Grants voor twee RUG-onderzoekers

    Twee onderzoekers van de Rijksuniversiteit Groningen (RUG), beide van de Faculty of Science and Engineering, ontvangen een European Research Council (ERC) Starting Grant: Jingxiu Xie en Gosia Wlodarczyk-Biegun. De Starting Grants bestaan uit elk...

  • 23 juli 2024

    De chips van de toekomst

    Onze computers gebruiken onnodig veel energie, en bovendien lopen we tegen de limieten van onze huidige technologie aan. Dus werkt CogniGron aan nieuwe materialen die het menselijk brein kunnen nabootsen, en ontwikkelt CogniGron-hoogleraar Tamalika...

  • 18 juli 2024

    Slimme robots om kleinere chips te maken

    Een robotarm in een fabriek die herhaaldelijk dezelfde beweging maakt: dat is iets van het verleden, vindt Ming Cao. Wetenschappers van de Rijksuniversiteit Groningen werken samen met hightech bedrijven om productieprocessen steeds meer autonoom te...