
Security & Codes

Jaap Top

Contents

Chapter 1. Binary codes 5
1. Example: the Hamming code 5
2. Definitions 7
3. Dual codes 11
4. Generator and parity-check matrices 13
5. Generalised Hamming codes 15
6. The MacWilliams identity 17
7. Cyclic codes 19
8. Exercises on binary linear codes 25

Chapter 2. Security 31
1. Advanced Encryption Standard 31
2. DH and RSA and ElGamal signatures 39
2.4. Discrete logarithms 42
2.6. Extracting square roots modulo p 43
2.7. Diffie-Hellman key exchange 45
2.8. Solving discrete logarithms 46
2.9. Rivest-Shamir-Adleman 46
2.10. ElGamal digital signatures 48
3. Prime numbers 50
4. A factorisation method: Pollard p− 1 52
5. Elliptic curves 54
5.1. The Edwards form for elliptic curves 74
6. Exercises on security 77

3

4 CONTENTS

This text treats two topics. Firstly, binary codes are discussed.
Such codes are used to store and transmit data. Assuming that the
received encoded data contains not too many errors, one wants to re-
construct the original data. Coding theory is used in CD’s and in
DVD’s, in communication satellites, and in essentially every situation
where digital data is stored or transmitted.

The second topic to be treated, is how to secure data: can one
encrypt a message in such a way that an adversary needs an immense
amount of time and effort to retrieve the original message from the
encrypted one?

Both topics will be treated in a rather algebraic fashion. However,
we have tried to minimize prerequisites.

Groningen, August 2009 and August 2015. Jaap Top.

CHAPTER 1

Binary codes

Binary codes encode data as strings of zeros and ones. A well
known example is the ASCII-code (American Standard Code for In-
formation Interchange); encoding letters, numerals and punctuation
marks as “words” consisting of 7 zeros and ones. A website such as

https://en.wikipedia.org/wiki/ASCII

contains details on this example. The symbols 0 and 1 used in binary
codes are called ‘bits’. There exist many codes that are not binary,
i.e., codes involving not just zeros and ones but also other symbols. An
example is the ISBN (International Standard Book Number), encoding
every book as a string of 13 numerals1.

We will restrict ourselves here to binary codes.

1. Example: the Hamming code

The Hamming code, invented by Richard Hamming (1915 - 1998),
consists of 16 strings, each containing 7 symbols 0 or 1. Write such a
string as (d1, d2, d3, d4, p1, p2, p3) and place the pi’s and dj’s as given in
the three circles below,

p1

p3p2

d2d1

d3

d4

then the rule is that each of the three circles should contain an even
number of ones. The strings in the Hamming code are usually called
words. As an example, 1111111 is in the Hamming code, because if we
place all ones in the indicated regions of the three circles, then each
circle turns out to contain 4 (hence an even number of) ones. Similarly,

1Strictly speaking, not only numerals but also the letter X.

5

https://en.wikipedia.org/wiki/ASCII

6 1. BINARY CODES

1110110 is not in the Hamming code, as here the top circle contains 3
(so an odd number of) ones.

Every word in the Hamming code consists of precisely 7 bits; in
other words: the Hamming code is a code of length 7. The fact that
the Hamming code contains precisely 16 words, is seen as follows. For
d1, d2, d3, d4 one may choose 0 or 1 arbitrarily; this yields 24 = 16
possibilities. Having chosen these four, p1 is fixed, since this bit makes
sure that the top circle contains an even number of ones. Similarly p2
takes care of the parity of the number of ones in the leftmost circle,
and p3 in the rightmost one. So indeed one obtains in total 16 words.

The dj are called the data bits of a word in the Hamming code.
The pi are called parity bits. The Hamming code has several properties
which will be discussed later in this chapter. Its most important feature
however, is the possibility to detect and correct a single error in a
received word. We now illustrate this in an example.

Example. Suppose that the received word is 1100101. Here the num-
ber of ones in the top circle is 3, so this is not a correct correct code
word. Considering all three circles, one finds that the number of ones
in the rightmost circle is even while in the leftmost circle this is odd.
Under the assumption that at most one bit is wrong, one concludes
that the error is contained in the top circle and also in the leftmost cir-
cle. Moreover, the error cannot be in the rightmost circle. Conclusion:
d1 is false, and the correct word is 0100101.

Analogously to the above example, every word containing at most
one erroneous bit can be corrected by considering which circles yield
an odd number of ones. The erroneous bit is now contained in the
intersection of those circles (and it is not in the remaining one(s)).
What if the received word contains more than one error? In order to
obtain a partial answer to this question, suppose we have a word in the
Hamming code. For our word, by definition all three circles contain an
even number of ones. Changing one bit of this word makes the number
of ones odd in at least one of the circles. And subsequently changing
another bit, there is still a circle with an odd number of ones. This
shows that if a word contains precisely two errors, this will be detected.
However, it is in general not possible to determine which two bits are
wrong.

Example. The word 0000110 is not in the Hamming code. If one
would know that this word contains two errors, then the corrected word
could be 0000000, but also 0110110 or 0001111. In case three errors
are made in a word of the Hamming code, then in general this can not
even be detected. For example, 1111111 and 1101100 are both in the
Hamming code.

2. DEFINITIONS 7

So we see that the minimal number of places in which two distinct
words of the Hamming code differ, equals 3. This is called the minimal
distance of the code.

One can make many variations on the idea of the Hamming code
by considering different configurations of circles, or replacing circles in
the plane by balls in space (or even in higher dimensional spaces). In
this way codes of larger length and with more words and also with a
higher minimal distance may be constructed.

2. Definitions

The set {0, 1}, equipped with an addition 0 + 0 = 1 + 1 = 0 and
0 + 1 = 1 + 0 = 1, and a multiplication 0 · 0 = 0 · 1 = 1 · 0 = 0 and
1 · 1 = 1, is denoted F2. This is just “arithmetic modulo 2”; instead of
F2 one also writes Z/2Z. Just as the real numbers R and the complex
numbers C and the rational numbers Q, F2 is a field. Websites such as

https://nl.wikipedia.org/wiki/Field (mathematics)

(and many mathematical lecture notes and textbooks on abstract al-
gebra) describe the general theory of fields.

In particular, every a ∈ F2 admits an additive inverse (which is
some b ∈ F2 satisfying a + b = 0), namely a itself. Moreover, if a 6= 0
then a admits a multiplicative inverse (this is some c ∈ F2 such that
ac = 1), namely again a itself.

Given any integer n > 0 one writes Fn
2 for the set of all se-

quences/strings (a1, a2, . . . , an) with all aj ∈ F2. The integer n is called
the length of the sequence. Two strings of the same length can be added
coordinate wise, and any string can be multiplied coordinate wise by
any element of F2. This makes Fn

2 into a vector space over the field F2.
Vector spaces are treated in courses on linear algebra (usually with an
emphasis on vector spaces over the field of real numbers or over the
field of complex numbers); see

https://nl.wikipedia.org/wiki/Vector space

Definition 2.1. Let n > 0 be an integer. A binary code C of length
n is a nonempty subset of Fn

2 . The elements of C are called the words
of the code.

If for all v, w ∈ C also v + w ∈ C, then C is called a binary linear
code.

So by definition, a binary linear code C is a linear subspace of
Fn
2 . Indeed, the definition implies that C contains some element v.

Linearity then implies that also v + v is in C, and this equals the zero
vector. It is now easy to verify that C is a vector space over the field
F2.

Example. The Hamming code H ⊂ F7
2 is a binary linear code. To see

this, we need to check that if v, w ∈ H, then also v+w ∈ H. Of course

https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Vector_space

8 1. BINARY CODES

one could try all possible v and w one by one and verify that indeed
v + w ∈ H. A better method runs as follows.

By definition H consists of all sequences (d1, d2, d3, d4, p1, p2, p3)
with the property that (d1, d2, d4, p1) and (d1, d3, d4, p2) and
(d2, d3, d4, p3) each contain an even number of coordinates equal to 1.
This means precisely that d1 +d2 +d4 +p1 = 0 and d1 +d3 +d4 +p2 = 0
and d2 + d3 + d4 + p3 = 0 (addition in the field F2!). In other words: H
consists of all words in F7

2 which are mapped to the zero vector under
the map ϕ : F7

2 −→ F3
2 given by

(d1, d2, d3, d4, p1, p2, p3) 7→ (d1 + d2 + d4 + p1, d1 + d3 + d4 + p2, d2 + d3 + d4 + p3) .

From the fact that ϕ is linear (this means, ϕ(v + w) = ϕ(v) + ϕ(w)
for all v, w) now follows that H (the kernel of ϕ) is a vector space.

Every vector space V has a basis, i.e., an ordered set of elements
{v1, . . . , vk} in V which span V (this means, every vector in V can be
written as a linear combination of vectors from that set), and moreover
the set is linearly independent (meaning that every vector in the span
of {v1, . . . , vk} has only one representation as a linear combination of
vectors from the basis). From linear algebra it is known that every
two bases of a linear space V contain the same number of elements.
This number is called the dimension of V , notation: dim(V). If C is
a binary code of length n, then k := dim(C) ≤ n. Such C is called
an [n, k]-code. (It is standard notation in coding theory to denote the
length of a code by the letter n and the dimension of a code by the
letter k.) If {v1, . . . , vk} is a basis for the [n, k]-code C, then every code
word v ∈ C can be written in a unique way as

v = a1v1 + a2v2 + . . .+ akvk

for some aj ∈ F2. Every linear combination of this shape is a codeword,
so we see that an [n, k]-code consists of precisely 2k words. Note that
this shows once more, that every basis consists of k elements: the total
number of elements in C equals 2 to the power the number of elements
of a basis! Also, since C ⊂ Fn

2 , it follows that 2k ≤ 2n and hence k ≤ n,
as we already knew from linear algebra.

In particular the number of code words in a binary linear code is
necessarily a power of 2.

Example. The Hamming code H is, as we saw, a binary linear code.
H consists of 16 code words of length 7, so apparently H is a [7, 4]-code.
A basis for H is {1000110, 0100101, 0010011, 0001111}, as is easily ver-
ified.

Definition 2.2. The Hamming distance d(v, w) of two code words
v, w ∈ Fn

2 is the number of coordinates in which v and w differ.
The Hamming weight |v| of a code word v ∈ Fn

2 is the number of
coordinates 6= 0 in v.

2. DEFINITIONS 9

The minimal distance d of a code C ⊂ Fn
2 is the minimal d(v, w)

where v and w run over all words in C (and v 6= w).
A Hamming ball of center v ∈ Fn

2 and radius r ≤ n is a ball for the
Hamming distance, that is

B(v, r) = {w ∈ Fn
2 | d(v, w) ≤ r}.

Just as the letters n and k are used for length and dimension, it is
standard to use d for the minimal distance. The notation [n, k, d]-code
therefore means: a linear code of length n, dimension k and minimal
distance d. In particular, the Hamming code is a [7, 4, 3]-code.

Lemma 2.3. (Error detection) Let C be a code with minimal dis-
tance d. Then C detects (up to) d− 1 errors.

Proof. Assume that we send a word u but the other party receives
v 6= u. The error is detectable whenever d(u, v) < d. Because this
contradicts with the minimal distance. �

Lemma 2.4. (Error correction) Let C be a code of minimal distance
d. Then C corrects (up to) bd−1

2
c errors, where b·c is the floor function.

Proof. We will show that the balls B
(
v, bd−1

2
c
)

are pairwise dis-

joint for all v ∈ C. This implies if x ∈ B
(
v, bd−1

2
c
)

then x = v.

Let v, v′ ∈ C be distinct words. Assume x ∈ B
(
v, bd−1

2
c
)
∩

B
(
v′, bd−1

2
c
)
. Then

d(v, v′) ≤ d(v, x) + d(x, v′) ≤ bd− 1

2
c+ bd− 1

2
c ≤ d− 1.

This implies v = v′ so we get a contradiction. �

Definition 2.5. (Relative parameters) Given a code C of length
n, dimension k and minimum distance d, the rate of C is defined as

R :=
k

n
∈ [0, 1]

and the relative distance as

δ :=
d

n
∈ (0, 1].

The rate quantifies the efficiency of the code. It is the ratio between
information bits and sent bits. A rate close to 0 corresponds to a very
redundant code which requires a huge amount of energy to transmit a
short message. A rate close to 1 corresponds to an efficient code for
which the ratio of pure information in the transmitted bit string is close
to 1. On the other hand, the relative distance quantifies the theoretical
capability to correct errors. The closer δ to 1, the larger number of
errors one can theoretically correct. Our objective is that both the
rate and the relative distance are close to 1. But this is not possible
since d + k ≤ n up to some exceptions. So a “good code” will be a

10 1. BINARY CODES

code satisfying a good trade off between these two relative parameters.
The choice of codes will depend on the situation where they are used:
for instance if the channel is very noisy, we will probably choose a code
with a large minimum distance, even if its rate is low. On the other
hand some devices require a limitation of energy consumption, and
hence will encourage to use a code of high rate.

The definitions immediately imply that an [n, k, d]-code satisfies
0 ≤ k ≤ n and 1 ≤ d ≤ n. We now consider some extreme cases.

If n = k, then the linear code C of length n contains 2n words,
hence C = Fn

2 . In this case d = 1. An other extreme case happens
when k = 0, which means we have a linear code C of length n and
dimension 0. So C contains only the zero word, 000 · · · 0 (of length n).
The minimal distance is undefined (or: equals∞) in this case, because
no two distinct words in the code exist.

Next, we consider extremal cases in the inequality 1 ≤ d ≤ n. The
case d = 1 means that the code contains two words v, w differing in
exactly one coordinate. If an error is made in (only) this coordinate, it
is not detectable (hence not correctable). The final extreme case, d = n,
means that v, w ∈ C exist with v and w differing in all n coordinates.
This implies v + w = 111 · · · 1. Linearity of C shows that this word
consisting of ones only, is in the code as well. Now d = n implies that
every other word differs from this all ones word in all n coordinates.
Conclusion: the code consists of precisely two words, namely 000 · · · 0
and 111 · · · 1. Hence k = 1.

The following result indicates how special the above examples are.

Theorem 2.6. Given a binary [n, k, d]-code C. Then k + d ≤ n,
except in the following examples:

(a) C = {000 · · · 0, 111 · · · 1} is an [n, 1, n]-code.
(b) C = Fn

2 is an [n, n, 1]-code.
(c) The code consisting of all words of length n having even Ham-

ming weight, is an [n, n− 1, 2]-code.

Proof. The examples (a) and (b) were already discussed. What
remains, is to show that an [n, k, d]-code C which does not satisfy
d+k ≤ n and which is not one of the codes from (a) or (b), is necessarily
a code as mentioned in (c), and it satisfies k = n− 1 and d = 2.

First, by assumption d is defined, so C contains at least two words
and therefore k > 0. Assume k + d > n for some [n, k, d]-code C not
given in (a) or (b). Consider π : C −→ Fk

2 given by

(a1, a2, . . . , an) 7→ (a1, a2, . . . , ak) .

Suppose v, w ∈ C satisfy π(v) = π(w). This means v and w may only
differ in the last n − k coordinates, so d(v, w) ≤ n − k. Since d is the
minimal distance in C and we assume d > n−k, it follows that v = w.

3. DUAL CODES 11

Conclusion: π is injective, and hence the image of C under π
contains precisely 2k elements. This means that π is bijective. In
other words: for every (a1, . . . , ak) exactly one v ∈ C exists with
π(v) = (a1, . . . , ak).

Now choose (a1, . . . , ak) = (1, 0, . . . , 0). The v ∈ C having this
initial segment, has distance ≥ d > n−k to the zero word in C. Hence
the remaining n− k coordinates of v all need to be 1.

We have k ≥ 2, since k = 1 would imply 1 + d = k + d > n and
therefore d = n. As was shown earlier, this would imply that C is
given as in (a), which was excluded. Applying the argument above to
(b1, . . . , bk) = (0, . . . , 0, 1) results in w ∈ C, and v + w ∈ C has a 1
only in the first and in the k-th coordinate. So d ≤ 2 and therefore
1 ≤ n− k < d ≤ 2, hence k = n− 1 and d = 2.

Instead of projecting on the first k coordinates, we can re-
peat the reasoning and project on any k coordinates. In this
way it is shown that all words containing exactly two ones, are
in C. In particular, C contains the n − 1 independent vectors
110000 · · · , 011000 · · · , 001100 · · · , . . . , 0 · · · 011. Every vector with an
even Hamming weight can be expressed as a linear combination of the
above vectors, hence is contained in C. Since precisely 2n−1 vectors
of length n have even weight, this yields all of C, and indeed it is an
[n, n− 1, 2]-code. This finishes the proof. �

Definition 2.7. The bound d ≤ n − k + 1 is called the Singleton
bound. A linear [n, k, d] code over F2 with d = n − k + 1 is called an
MDS code. Here, MDS stands for maximum distance separable.

3. Dual codes

In analogy with the standard inner product on Rn, one assigns to
two words v, w ∈ Fn

2 an element of F2. Write v = (a1, . . . , an) and
w = (b1, . . . , bn), then by definition:

v · w := a1b1 + a2b2 + . . .+ anbn ∈ F2.

Proposition 3.1. The dot product satisfies the following proper-
ties.

(1) Commutative. For all v, w ∈ Fn
2 we have u · v = v · w.

(2) Bilinear. For all u, v, w ∈ Fn
2 we have

u · (v + w) = u · v + u · w.
(3) We have v · w = 0 iff number of coordinates in which both u

and v have one is even.
(4) For all even weight v ∈ Fn

2 we have v · v = 0.
(5) If v ∈ Fn

2 satisfies v · w = 0 for all w ∈ Fn
2 , then v = 0.

12 1. BINARY CODES

Proof. We will prove (5) and the rest is left to the reader. Take i
with 1 ≤ i ≤ n. Since v · w = 0 for all w, this holds in particular for
the word ei consisting of a 1 on place i and 0 elsewhere. Now 0 = v · ei
equals the i-th coordinate of v, so v = 0. �

Definition 3.2. The dual C⊥ of a code C ⊂ Fn
2 is

C⊥ := {v ∈ Fn
2 | v · c = 0 for all c ∈ C} .

It is immediate from the definition that if C has length n, then C⊥

is a linear code, of the same length n.

Proposition 3.3. If C is an [n, k]-code, then C⊥ is an [n, n− k]-
code.

Proof. Take a basis v1, . . . , vk for C, and define the map

ϕ : Fn
2 −→ Fk

2

by ϕ(v) := (v·v1, v·v2, . . . , v·vk). This is a linear map. Its kernel, i.e., all
v with ϕ(v) = 0, consists of all v satisfying v·v1 = v·v2 = . . . = v·vk = 0.
Every word in C⊥ has this property, and since all words in C can be
written as a combination of the words v1 to vk, vice versa every element
of the kernel of ϕ is also contained in C⊥. Conclusion: Ker(ϕ) = C⊥.

We will now use the famous result

dim Ker(ϕ) + rank(ϕ) = n

from linear algebra. We first determine rank(ϕ). With respect to the
standard bases for Fn

2 and Fk
2, ϕ is given by the matrix with as rows

the words v1 to vk. Indeed, the i-th standard basis vector ei (with 1 on
place i and zeros elsewhere) has ei · vj equal to the i-th coordinate of
vj. This shows that the i-th column of the requested matrix consists
of the i-th coordinates of v1, v2, · · · , vk, respectively. By definition the
rows of the matrix obtained here, are independent, so rank(ϕ) = k.

It follows that dimC⊥ = dim Ker(ϕ) = n− k. �

In ‘ordinary’ linear algebra over K = R or K = C an analo-
gous theorem holds: is V a finite dimensional vector space over K
equipped with an inner product, and is W a subspace of V , then
dim W + dim W⊥ = dim V . Most linear algebra textbooks prove this
by observing that W ∩W⊥ = {0}, and W +W⊥ = V . In our situation,
both these assertions are in general false, hence the argument above
necessarily runs differently.

Proposition 3.4. Given two linear codes C,D ⊂ Fn
2 .

(1) One has C ⊂ D ⇔ C⊥ ⊃ D⊥.
(2) One has C⊥⊥ = C.

4. GENERATOR AND PARITY-CHECK MATRICES 13

Proof. Assume C ⊂ D and let v ∈ D⊥. Since every c ∈ C is also
in D, one has v · c = 0, so v ∈ C⊥. This shows D⊥ ⊂ C⊥.

For c ∈ C arbitrary, then c ·v = 0 for every v ∈ C⊥, hence c ∈ C⊥⊥.
This proves C ⊂ C⊥⊥. The dimension of C⊥⊥ equals n−(n−dim(C)) =
dim(C), so indeed C = C⊥⊥.

Finally, suppose C⊥ ⊃ D⊥. The arguments above show that in this
case

C = C⊥⊥ ⊂ D⊥⊥ = D.

This completes the proof. �

We close this section with an application of ‘duals’ which, strictly
speaking, does not belong to coding theory. The theorem below plays
a role in the computer game FlipIt; see for example

http://www.math.rug.nl/~top/FlipIt.pdf

4. Generator and parity-check matrices

Definition 4.1. (Generator matrix) Let C be an [n, k, d]-code. A
generator matrix G is a matrix in Mk×n(F2) whose rows form a basis
for C. That is

C = {v ·G | v ∈ Fk
2}.

We say that G is in the standard form if G = [Ik |X]. We also say
that G is a systematic generator matrix of C.

Definition 4.2. (Parity-check matrix) Let C be an [n, k, d]-code.
A parity-check matrix H ∈Mn−k×n for C is a generator matrix for the
dual code C⊥. That is

C⊥ = {v ·H | v ∈ Fn−k
2 }.

We say that H is in the standard form if H = [Y | In−k].

Proposition 4.3. Let H be a parity-check matrix for an [n, k]-
code C. Then, for v ∈ Fn

2 , we have

v ∈ C ⇐⇒ vH> = 0 ⇐⇒ Hv> = 0.

Proof. Since (vH>)> = H>
>
v> = Hv>, the last equivalence fol-

lows. Let ui be the i-th row of H. If v ∈ C, then v · ui = 0 for all
1 ≤ i ≤ n. Therefore, we have vH> = 0. Conversely, vH> = 0 implies
that v · ui = 0 for all 1 ≤ i ≤ n and hence v · c = 0 for all c ∈ C⊥. �

Corollary 4.4. A given k×n matrix G is a generator matrix for
an [n, k]-code C if and only if the rows of G are linearly independent
and HG> = 0, where H is a parity-check matrix for C.

Equivalent statements for Proposition 4.3 and Corollary 4.4 are as
follows:

http://www.math.rug.nl/~top/FlipIt.pdf

14 1. BINARY CODES

Proposition 4.5. Let G be a generator matrix for an [n, k]-code C.
Then, for v ∈ Fn

2 , we have

v ∈ C⊥ ⇐⇒ vG> = 0 ⇐⇒ Gv> = 0.

A given (n−k)×n matrix H is a parity-check matrix for an [n, k]-code
C if and only if the rows of H are linearly independent and HG> = 0,
where G is a generator matrix for C.

Proposition 4.6. Let G be a generator matrix for an [n, k]-code
in the standard form [Ik | X]. Then the parity check matrix of G is
[X> | In−k].

Proof. Follows from Proposition 4.5 since [Ik | X][X> | In−k]> =
X +X = 0. �

Two [n, k]-codes are equivalent if a generator matrix of one can be
obtained from a generator matrix of the other by a sequence of the
following operations:

(i) permutation of the rows
(ii) addition of one row to another

(iii) permutation of the columns.

Theorem 4.7. Every [n, k]-code C is permutation equivalent to an
[n, k]-code C ′ with a generator matrix in the standard form.

Proof. Applying row operations to a generator matrix G gives
another generator matrix for C. So if G′ is the reduced row echelon
matrix of G, then by permuting the columns of G′, we obtain a matrix
in the form [Ik |X]. �

One can “read” the minimum distance by studying the linear rela-
tions between the column vectors of a parity-check matrix.

Proposition 4.8. Let C be a code with parity–check matrix H.
Every set of s columns of H is linearly independent if and only if the
minimal distance is strictly greater than s.

Proof. (⇒:) Let H1, H2, . . . , Hn be the columns of H. Assume
that every subset of {H1, H2, . . . , Hn} of size s is linearly independent.
Let c = (c1, . . . , cn) be a non-zero codeword in C. Then we have

0 = H · c> =
n∑

i=1

ciHi =
∑

ci 6=0

ciHi.

Claim. d > s:
Since every subset of {H1, H2, . . . , Hn} of size s is linearly indepen-

dent, if |c| ≤ s, then the coefficients in the sum
∑

ci 6=0 ciHi = 0 must all

be zero. This implies c = (0, . . . , 0). So we have |c| > s for all c ∈ C.
Hence d > s.

5. GENERALISED HAMMING CODES 15

(⇐:) Suppose that the minimal distance is strictly greater than s.
Assume that a subset of {H1, H2, . . . , Hn} of size t ≤ s is linearly depen-
dent. Without loss of generality, say H1, . . . , Ht are linearly dependent.
Then there exists ci ∈ F2 (not all zero) such that

c1H1 + · · · ctHt = 0.

This implies that c = (c1, . . . , ct, 0, . . . , 0) ∈ C since H · c> = c1H1 +
· · · ctHt = 0. However this implies that the minimal distance is at
most t hence at most s. This contradicts with the assumption. So we
proved that every set of t ≤ s columns of H is linearly independent. In
particular, every set of s columns is linearly independent. �

Two immediate consequences of the proposition are

(i) If H has no zero column, then d > 1.
(ii) If the column vectors of H are pairwise linearly independent,

then d > 2.

Corollary 4.9. Let C be an [n, k, d]-code. Let H be a parity-
check matrix of C. Then the minimal distance is s if and only if

(i) every set of s− 1 columns of H is linearly independent and
(ii) at least one set of s columns of H is linearly dependent. �

Example.
Let H be a [7, 4, 3]-Hamming code. The the matrix

1101100
1011010
0111001

is a parity-check matrix for H.
Now observe that the 7 columns here form exactly all words 6= 0 in

F3
2. This property is generalized in Definition 5.1. In § 5 we will see

that for every m ≥ 2, the minimal distance in H(m) equals 3. So these
codes have a fairly high information density k/n, and they can correct
any received word containing precisely one error.

5. Generalised Hamming codes

In this section we will apply the MacWilliams identity to the gen-
eralised Hamming codes H(m).

Definition 5.1. The generalised Hamming code H(m) with m ≥ 2
is defined as a linear code of length 2m− 1 with the parity-check matrix
H whose columns consist of all nonzero vectors in Fm

2 .

Proposition 5.2. The generalised Hamming code H(m) is a [2m−
1, 2m − 1−m, 3]-code.

16 1. BINARY CODES

Proof. By definition the columns are vectors in Fm
2 , i.e., the

columns are of length m, the matrix H is an m × (2m − 1) matrix.
It follows that H(m) is a [2m − 1, 2m − 1−m]-code.

By definition of a generalized Hamming code, any two vectors are
linearly independent and at least one set of three vectors is linearly
dependent. Hence by Corollary 4.9 we have d = 3. �

Proposition 5.3. For m ≥ 2 all non-zero words in H(m)⊥ have
the same weight 2m−1. In particular H(m)⊥ is a [2m−1,m, 2m−1]-code.

Proof. By Proposition 3.3, the dual H(m)⊥ is a [2m− 1,m]-code.
We will show that the minimal distance is 2m−1.

Recall that a parity check matrix H of H(m) is a generator matrix
of H(m)⊥. Let H1, . . . , Hm denote the rows of the parity check matrix
H of H(m). Then

H(m)⊥ = {
m∑

i=1

ciHi : ci ∈ F2}.

Let w = (w1, . . . , w2m−1) ∈ H(m)⊥ be an arbitrary non-zero code-
word. Let ci ∈ F2 be such that w =

∑
ciHi. Take any column ai of H

where 1 ≤ i ≤ 2m − 1, say H = [a1 · · · am]>. Then the ith coordinate
of w is a1c1 + · · ·+ amcm.
Claim. |w| = 2m−1.
Proof of the claim. Define the linear map

ϕw : Fm
2 → F2

(a1, . . . , am) 7→ a1c1 + · · ·+ amcm

where ci are as defined above. The cardinality of the preimage of 1
gives the weight of w since w =

∑
ciHi.

This linear map is surjective since ϕw((0, . . . 0)) = 0 and since at
least one ci is non-zero so we have ϕw((0, . . . , 1, . . . , 0)) = 1. By the
Rank-Nullity theorem we have dim(kerϕw) = m−dim(imϕw) = m−1.
This implies that the number of elements in Fm

2 mapping to 0 is 2m−1.
Hence number of elements mapping to 1 is also 2m−1. This implies
|w| = 2m−1.

So we proved that every codeword in H(m)⊥ has weight 2m−1 hence
d = 2m−1. �

The code H(m)⊥ thus has the property: any two words 6= 0 in
the code have the same weight. If these two words differ, then their
sum has this same weight as well. In the literature a code with these
properties is called a simplex code (of length 2m − 1).

6. THE MACWILLIAMS IDENTITY 17

6. The MacWilliams identity

In this section we prove a relation between the weights appearing
in a linear code C and the weights appearing in the dual of C. Let C
be an arbitrary code of length n.

Definition 6.1. The enumerator of C is the polynomial

WC(x, y) :=
n∑

j=0

#{c ∈ C | |c| = j}xjyn−j =
∑

c∈C

x|c|yn−|c| ∈ Z[x, y].

As an example, the Hamming code H has as enumerator polynomial
WH(x, y) = y7 + 7x3y4 + 7x4y3 + x7, since this code contains 1 word of
weight 0, there are 7 words of weight 3 and also of weight 4, and finally
1 word of weight 7.

Note that WC(1, 1) equals the number of words in the code C.
Hence the dimension k of a linear code C can be read off from the
enumerator WC of C. Furthermore, the total degree of WC equals the
length n of the code, so also the length can be read off from WC .

Finally, if C is a linear code, then the minimal distance d of C may
be found using WC as well: it equals to the smallest positive degree
of x in WC(x, y), in other words, it equals to the multiplicity of the
solution x = 0 in the equation WC(x, 1) = 1 (check this for yourself!).

The MacWilliams identity/theorem is the following.

Theorem 6.2. Let C ⊂ Fn
2 be a linear [n, k]-code. Then we have

WC⊥(x, y) = 2−kWC(y − x, y + x).

To show this, we begin by defining for a ∈ F2 the integer (−1)a as
−1 in case a = 1, and as +1 when a = 0. Then (−1)a+b = (−1)a(−1)b.
Since our dot product v · w ∈ F2, also (−1)v·w is defined.

Lemma 6.3. Let C ⊂ Fn
2 be an [n, k]-code and take v ∈ Fn

2 . Then
∑

c∈C

(−1)c·v =

{
2k if v ∈ C⊥;
0 otherwise.

Proof. If v ∈ C⊥, then c · v = 0 for all c ∈ C, so in this case
each c ∈ C yields a contribution 1 to the sum. The total then equals
#C = 2k.

If v 6∈ C⊥, choose c′ ∈ C with c′ · v = 1. Note that C = c′ + C,
hence ∑

c∈C

(−1)c·v =
∑

c∈C

(−1)(c
′+c)·v = −

∑

c∈C

(−1)c·v,

which implies that this sum equals 0. �

The definition of the enumerator involves terms x|c|yn−|c| (for a code
word c). Assigning such terms to a code word defines a map from
Fn
2 to Z[x, y], the polynomials in the variables x and y with integer

coefficients. These kinds of maps will now be considered more generally.

18 1. BINARY CODES

Definition 6.4. If ϕ : Fn
2 → Z[x, y] an arbitrary map, then a

new map denoted ϕ̂ : Fn
2 → Z[x, y] is defined as

ϕ̂(v) :=
∑

w∈Fn
2

(−1)v·wϕ(w).

Lemma 6.5. If C ⊂ Fn
2 is an [n, k]-code and ϕ : Fn

2 → Z[x, y] is
arbitrary, then ∑

v∈C

ϕ̂(v) = 2k
∑

w∈C⊥
ϕ(w).

Proof. By definition
∑

v∈C ϕ̂(v) =
∑

v∈C
∑

w∈Fn
2
(−1)v·wϕ(w).

Interchanging the order of summation in the latter sum, and
applying Lemma 6.3, it follows immediately that the sum equals
2k
∑

w∈C⊥ ϕ(w), which is what we wanted to prove. �

The MacWilliams identity will follow by applying the above lemma
to the map ϕ, given by ϕ(v) := x|v|yn−|v|. In this case, by definition
ϕ̂(v) =

∑
w∈Fn

2
(−1)v·wx|w|yn−|w|.

One now expands the latter sum, writing m := |v|. For any w ∈ Fn
2 ,

denote by j the number of places where both w and v have coordinate
1. Then 0 ≤ j ≤ m, and (−1)v·w = (−1)j.

Vice versa, given an integer j such that 0 ≤ j ≤ m and an i ≥ 0
with i + j ≤ n, there are exactly

(
m
j

)(
n−m

i

)
words w with |w| = i + j

and the property that precisely j places exist on which both v and w
have a 1. This implies the formula

ϕ̂(v) =
m∑

j=0

n−j∑

i=0

(−1)j
(
m

j

)(
n−m
i

)
xi+jyn−i−j.

Here the double sum can be factored as(
m∑

j=0

(
m

j

)
(−x)jym−j

)(
n−m∑

i=0

(
n−m
i

)
xiyn−m−i

)
,

which equals (y − x)m(y + x)n−m. Summarizing:

ϕ̂(v) = (y − x)|v|(y + x)n−|v|.

Combining this formula with Lemma 6.5 one finds

WC(y − x, y + x) =
∑

v∈C(y − x)|v|(y + x)n−|v|

=
∑

v∈C ϕ̂(v) = 2k
∑

w∈C⊥ ϕ(w) = 2kWC⊥(x, y).

This proves the MacWilliams identity. �

Example. Proposition 5.3 implies that the enumerator of H(m)⊥

is given by y2
m−1 + (2m − 1)x2

m−1
y2

m−1−1. The MacWilliams iden-
tity then yields a formula for the enumerator of H(m). Check your-
self, by computing the coefficient of x3y2

m−4, that H(m) has exactly

7. CYCLIC CODES 19

(2m − 1)(2m − 2)/6 words of weight 3. To see this without using the
MacWilliams identity: this number of words equals the number of sub-
sets {u, v, w} ⊂ Fm

2 having the properties 0 6∈ {u, v, w}, #{u, v, w} = 3
and u + v + w = 0. Any such triple is obtained by first choosing
u 6= 0 (there are 2m−1 possibilities for this), then choosing v such that
0 6= v 6= u. There are 2m−2 possibilities for this v. As third vector one
now has to take w = u+ v. This gives all ordered triples (u, v, w) with
indeed the three vectors pairwise distinct and non-zero. Each of the 6
permutations of such a triple yields the same set {u, v, w}. It follows
that indeed the number of such sets equals (2m − 1)(2m − 2)/6.

7. Cyclic codes

One of the advantages of a linear code C ⊂ Fn
2 over a general subset

D ⊂ Fn
2 is that testing whether a given v ∈ Fn

2 satisfies v ∈ C is easier
than checking whether v ∈ D. Indeed, take a basis v1, . . . , vt for C⊥.
Then v ∈ C ⇔ v · vj = 0 for 1 ≤ j ≤ t. Without further properties of
D, verifying whether v ∈ D requires trying all words in D (obviously
one should sort the elements of D in some way to make this search
more efficient, but still it will be slower than testing v ∈ C).

In this section we study linear codes with an additional property:
they are ‘cyclic’. We will see that for such codes, testing whether a
given word is in the code is even simpler. And this is by far not the
only advantage of cyclic codes.

Definition 7.1. A cyclic linear code of length n is a linear code
C ⊂ Fn

2 having the property: for every word (a0, a1, . . . , an−1) ∈ C, also
(an−1, a0, a1, . . . , an−2) ∈ C.

In other words: C is cyclic, precisely when C is closed under cycli-
cally shifting coordinates. Note that we could study nonlinear cyclic
codes as well, but this will not be done here. We denote the ‘shift’ on
Fn
2 by σ, so

σ : Fn
2 → Fn

2 (a0, a1, . . . , an−1) 7→ (an−1, a0, a1, . . . , an−2).

Some properties of σ are presented in the next lemma.

Lemma 7.2. (1) For all v ∈ Fn
2 one has |σ(v)| = |v|.

(2) For all v, w ∈ Fn
2 one has d(v, w) = d(σ(v), σ(w)).

(3) The map σ : Fn
2 → Fn

2 is linear and invertible.
(4) For all v, w ∈ Fn

2 one has v · w = σ(v) · σ(w).
(5) A linear code C ⊂ Fn

2 is cyclic ⇔ C = σ(C).

The properties are immediate consequences of the definitions; verify
this yourself.

Corollary 7.3. If C is cyclic linear, then so is C⊥.

20 1. BINARY CODES

Proof. We already saw that C⊥ is linear, so it remains to verify
that if v ∈ C⊥, then also σ(v) ∈ C⊥. For this, consider an arbitrary
c ∈ C. Write c = σ(c′) for some c′; since C is cyclic, one has c′ ∈ C.
The property v ∈ C⊥ implies v · c′ = 0, and therefore σ(v) · c =
σ(v) · σ(c′) = v · c′ = 0. Hence indeed σ(v) ∈ C⊥, which is what we
wanted to prove. �

Example. The Hamming code H, as presented in the previous section,
is not cyclic. For example 1000110 ∈ H, but 0100011 6∈ H. However,
a very small adjustment changes H into a cyclic code: consider H ′

consisting of all strings (d1, d2, d4, d3, p2, p1, p3) with di and pj satisfy-
ing the same properties also used to define H. Then H ′ and H are
‘equivalent’: in some sense they have the same code words, except that
the coordinates have been permuted. Now check yourself that indeed
H ′ is cyclic.

Our aim is to describe all cyclic linear codes, of every possible
length. To this end, denote

Rn := F2[x]/(xn + 1).

This means: Rn consists of the polynomials in the variable x, having
coefficients in F2, and with these polynomials we do arithmetic modulo
(xn + 1). Equivalently: two polynomials f, g ∈ F2[x] are considered
equal in Rn, notation f ≡ g mod (xn+1), precisely when (xn+1)|f+g.

The usual addition and multiplication of polynomials then also yield
an addition and a multiplication on Rn:

(f mod (xn + 1)) + (g mod (xn + 1)) = (f + g mod (xn + 1))

and

(f mod (xn + 1)) · (g mod (xn + 1)) = (fg mod (xn + 1)).

Arithmetic in Rn is quite analogous to arithmetic in Z/mZ.

Example. In Rn one has xn = 1 (since obviously (xn + 1) divides
xn + 1). More generally xr+qn = xr. Namely, xr+qn = xr · (xn)q ≡
xr · 1q ≡ xr mod (xn + 1). So computing in Rn one may take in xm the
exponent modulo n. Moreover, if f, g ∈ F2[x] both have degree ≤ n−1,
and f 6= g, then also f 6≡ g mod (xn + 1). For if (xn + 1)|f + g, then
f + g = (xn + 1)h for certain h ∈ F2[x], and h 6= 0 since f 6= g. This
yields a contradiction, because (xn +1)h has degree at least n, whereas
f + g has degree at most n− 1.

In R7 it holds that (verify yourself!)

(x4 + x+ 1) · (x5 + x2 + 1) = x9 + x6 + x4 + x6 + x3 + x+ x5 + x2 + 1

= x2 + x5 + x4 + x3 + x2 + x+ 1
= x5 + x4 + x3 + x+ 1.

7. CYCLIC CODES 21

As vector spaces over F2 one has Fn
2
∼= Rn, for example using the iso-

morphism sending (a0, a1, . . . , an−1) ∈ Fn
2 to a0+a1x+ . . .+an−1x

n−1 ∈
Rn. In this way a linear code of length n is considered as a set of poly-
nomials of degree < n, with the coefficients of a polynomial exactly
the coordinates of the corresponding code word. Linearity of the code
translates into the property: when f and g are polynomials in the code,
so is f + g.

Theorem 7.4. A nonempty subset C ⊂ Rn defines a cyclic linear
code, precisely when the next two conditions hold:

(1) For all f, g ∈ C, also f + g ∈ C;
(2) For all f ∈ C and all g ∈ Rn, one has gf mod (xn + 1) ∈ C.

Proof. If the two conditions hold, then the first one implies that
C is linear. The second one, applied with g = x mod (xn + 1), yields
that if a0 + . . . + an−1x

n−1 ∈ C, then also x(a0 + . . . + an−1x
n−1) =

a0x + . . . + an−1x
n ≡ an−1 + a0x + . . . + an−2x

n−1 mod (xn + 1) ∈ C.
So indeed C is cyclic.

Vice versa, is C linear and cyclic, then the first condition holds. For
the second one, suppose g =

∑
xnj exponents 0 ≤ n1 < . . . < nt < n,

and let f ∈ C. Since C is cyclic, xf, x2f, . . . , xn−1f (all taken modulo
xn + 1) are in C as well. By linearity of C then also gf =

∑
xnjf ∈ C.

This proves the theorem. �

The above theorem reduces the problem of describing all cyclic
linear codes of given length n, to the question: what are the subsets
of Rn which are closed under addition, and under multiplication by
arbitrary elements of Rn. In algebra any such subset is called an ‘ideal’.

An analogous problem for ideals in Z is maybe more familiar: here
the nonempty subsets closed under addition and under multiplication
by arbitrary integers, are just the sets nZ (the multiples of an arbi-
trary, fixed n). Similarly, the nonempty subsets of Z/nZ closed under
addition and under multiplication by arbitrary elements of Z/nZ, are
precisely the subsets (m mod n) ·Z/nZ with m any divisor of n. Those
who know a proof of the latter statement will note that the theorem
below is shown analogously.

Theorem 7.5. A cyclic, linear code C ⊂ Rn can be written as

C = Cf := {g mod (xn + 1) | g ∈ F2[x] is a multiple of f}
where f is a divisor of xn + 1. To C, a unique such f exists.

Moreover, any Cf with f ∈ F2[x] defines a cyclic, linear code.

Proof. By Theorem 7.4 any Cf is a cyclic, linear code. Vice versa
let C ⊂ Rn be a cyclic, linear code. If C = {0}, take f = xn + 1; then
C = Cf and f |(xn + 1).

Now assume C 6= {0}. Take f ∈ C with f 6= 0 of minimal degree.
Since C is cyclic and linear, all multiples of f (modulo (xn + 1)) are

22 1. BINARY CODES

also in C, hence Cf ⊂ C. We now do division with remainder of xn + 1
by f . This yields

xn + 1 = qf + r

for some q, r ∈ F2[x], with deg(r) < deg(f). Here r ≡ qf mod (xn +1),
so r mod (xn + 1) ∈ C. Of all elements 6= 0 in C, f has the smallest
possible degree, and therefore r = 0. So indeed f divides xn + 1.

We now show that every g mod (xn + 1) ∈ C is in Cf . Write
g = pf + s with p, s ∈ F2[x] and deg(s) < deg(f). Since pf mod (xn +
1) ∈ Cf ⊂ C, we have s ≡ g + pf mod (xn + 1) ∈ C. As before, one
concludes s = 0, so g mod (xn + 1) ∈ Cf .

Unicity. Assume Cf = Cf̃ for two divisors f, f̃ of xn + 1. Then

f̃ ∈ Cf , so g exists such that f̃ ≡ fg mod (xn + 1). This in turn means

that h exists such that f̃ + fg = (xn + 1)h. It follows that f divides

f̃ and, reversing the roles of f and f̃ , also f̃ divides f . This is only
possible when f = f̃ .

This proves the theorem. �

Definition 7.6. Given a cyclic linear code C, the (unique) poly-
nomial f with f |(xn + 1) and C = Cf is called the generator of C.

Using the generator f of a cyclic linear code C ⊂ Rn one can easily
verify whether some c ∈ Rn is in C: reasoning as in the proof above,
this is the case precisely when f divides c.

The dimension of C is determined by f as follows:

Theorem 7.7. If f is the generator of a cyclic linear code C ⊂ Rn,
then dim C = n− deg(f).

Proof. Let ` be the degree of the generator f of C and take g ∈ F2[x]
such that fg = xn + 1. Write

f = 1 + a1x+ . . .+ a`−1x
`−1 + x`

and

g = 1 + b1x+ . . .+ bn−`−1x
n−`−1 + xn−`

with aj, bj ∈ F2. Consider the map

ϕ : Rn −→ C,

given by ϕ(h mod (xn + 1)) = fh mod (xn + 1). This map is linear,
and its image is all of C. Hence n = dim Ker(ϕ) + dim C. In C one
has the elements f, xf, . . . , xn−`−1f , corresponding to the code words

(1, a1, . . . , a`−1, 1, 0, . . . , 0)
(0, 1, a1, . . . , a`−1, 1, 0, . . .)

· · ·
(0, . . . , 0, 1, a1, . . . , a`−1, 1).

From this we see dim C ≥ n− `.

7. CYCLIC CODES 23

Now consider Kerϕ. For every a ≥ 0 is xag mod (xn + 1) ∈ Kerϕ,
because ϕ(xag mod (xn + 1)) = xagf mod (xn + 1) ≡ 0. Arguing as
before, we see that g, xg, . . . x`−1g are independent elements in Kerϕ,
so dim Ker(ϕ) ≥ `.

As dim Ker(ϕ) + dim C = n, it follows that dim Ker(ϕ) = ` and
dim C = n− `, which is what we wanted to show. �

Corollary 7.8. Let f = a0 + a1x+ a2x
2 + . . .+ a`x

` ∈ F2[x] such
that f | xn + 1. Then the set

{f, xf, . . . , xn−`−1f}
forms a basis for Cf . Moreover, the matrix

a0 a1 . . . a`−1 a` 0 0 . . . 0
0 a0 a1 . . . a`−1 a` 0 . . . 0

...
0 0 . . . 0 a0 a1 . . . a`−1 a`

is a generator matrix for Cf , where a0 = a` = 1.

Let C ⊂ Rn be a cyclic, linear code with generator f |(xn + 1). By
Corollary 7.3, C⊥ is cyclic and linear as well. In particular C⊥ also has
a generator, say g. From Proposition 3.3 and Theorem 7.7 it follows
that

deg(g) = n− dim C⊥ = dim C = n− deg(f).

In order to find, for a given f , the corresponding g we now consider
multiplication in Rn more closely.

Take h = a0 + a1x+ . . .+ an−1x
n−1 and k = b0 + b1x+ . . . bn−1x

n−1.
Then hk = c0 + c1x + . . . c2n−2x

2n−2, with cj =
∑
apbq (sum over all

p, q such that 0 ≤ p, q ≤ n − 1 and p + q = j). So modulo (xn + 1),
which means in Rn, one has

hk ≡ (c0 + cn) + (c1 + cn+1)x+ . . .+ (cn−2 + c2n−2)xn−2 + cn−1xn−1 (mod xn + 1).

Here the coefficients are

c0 + cn = a0b0 + a1bn−1 + a2bn−2 + . . .+ an−1b1;
c1 + cn+1 = a0b1 + a1b0 + a2bn−1 + . . .+ an−1b0;

· · ·
cn−2 + c2n−2 = a0bn−2 + a1bn−3 + . . .+ an−2b0 + an−1bn−1;

cn−1 = a0bn−1 + a1bn−2 + . . .+ an−1b0.

One recognizes dot products on Fn
2 : put v = (a0, a1, . . . , an−1) for the

vector of coefficients of h, and wrev = (bn−1, bn−2, . . . , b0) for the (given
in reverse ordering) vector of coefficients of k. Then the calculated co-
efficients of the product are v ·σ(wrev), v ·σ2(wrev), . . . v ·σn−1(wrev), v ·
wrev and these are all 0. So wrev ∈ C⊥.

This observation leads to the following result.

24 1. BINARY CODES

Proposition 7.9. Suppose xn + 1 = fg for certain polynomials
f, g ∈ F2[x], and let C ⊂ Rn be the cyclic, linear code with generator
f . Then the generator of C⊥ is g∗ := xdeg(g)g(x−1).

Proof. Let the notation be as above and let w∗ ∈ Fn
2 be the vector

of the coefficients of g∗. Then we have w∗ = σdeg(g)+1(wrev) and by
Corollary 7.3, we have w∗ ∈ C⊥.

Therefore Cg∗ is a subspace in C⊥. So we get

deg(f) = n− deg(g∗) = dim(Cg∗) ≤ dim(C⊥) = n− dim(C)

= n− (n− deg(f))

= deg(f)

and hence dim(Cg∗) = deg(f). This proves C⊥ = Cg∗ . �

Exercise. Compute the parity-check matrix of the cyclic code Cf

of length 7 where f = x3 + x + 1 and conclude that Cf is a [7, 4, 3]
Hamming code.

In practice the software package Magma is perfectly suited for cal-
culating with (cyclic and other) codes. An online Magma calculator
can be found on

http://magma.maths.usyd.edu.au/calc/

The example on the next case deals with a cyclic [23, 12]-code, and
Magma computes that it is a [23, 12, 7]-code. The commands

Dimension(C);

Basis(C);

MinimumWord(C);

yield more information on this code.

http://magma.maths.usyd.edu.au/calc/

8. EXERCISES ON BINARY LINEAR CODES 25

The following is an open problem in coding theory: do cyclic, linear
[nj, kj, dj]-codes exist, having all of the next three properties:

(1) lim
j→∞

nj =∞;

(2) lim
j→∞

kj/nj > 0;

(3) lim
j→∞

dj/nj > 0.

8. Exercises on binary linear codes

(1) Generalise the construction of the Hamming code H (which
uses three circles in 2-space) to a construction using four balls
in 3-space.

What are the length n, the dimension k, and the minimal
distance d of the resulting code?

(2) Verify that the Hamming weight satisfies the triangle inequal-
ity: |v + w| ≤ |v|+ |w| for all v, w ∈ Fn

2 .
Moreover, show that if |v + w| = |v|+ |w|, then v · w = 0.

(3) For v ∈ Fn
2 and m ∈ Z≥1, the Hamming ball with radius m

around v denoted Bm(v) is defined by

Bm(v) := {c ∈ Fn
2 ; |c− v|} .

Determine #Bm(v).

(4) Suppose C is a linear code. Let E ⊂ C be the set of
all words in C that have even weight. Show that E is a
linear code as well. Moreover, show that either E = C, or

26 1. BINARY CODES

dim(E) = dim(C)− 1.

(5) Show that if C1 and C2 are linear codes of the same length,
then C1 ∩ C2 is also a linear code.

(6) Construct the following binary codes if possible, or explain
why it is not possible.

(a) [6, 3, 3]
(b) [6, 32, 2]
(c) [k, 3, k − 1]
(d) [6, 15, 3]

(7) Find the maximum number of codewords of length n = 4 in
a code in which any single error can be detected. Give an
example of such a code. What about for general n?

(8) Find the dimension of code C = 〈S〉 for the following S. Find
a generating matrix and a parity check matrix for these codes.
Compute the minimal distance for each code.

(a) S = {000, 111},
(b) S = {0110, 1010},
(c) S = {0101, 1101, 1001}.

(9) Let C be a self-dual binary code with parameters [n, k, d].
(i) Show that the all-one vector (1, 1, ..., 1) is in C.
(ii) Show that either all the codewords in C have weight di-

visible by 4; or exactly half of the codewords in C have
weight divisible by 4 while the other half have even weight
not divisible by 4.

(iii) Let n = 6. Determine d.

(10) Starting from the Hamming code H, one constructs a code H ′

of length 8, by adding a parity bit as follows: if c ∈ H has
even weight, then c|0 (this is c, followed by the bit 0) is in H ′;
and if the weight of c is odd, then c|1 ∈ H ′.

Verify that H ′ is linear. What are the dimension and the
minimal distance of H ′?

(11) Show that if the code C satisfies C ⊂ C⊥, then every word in
C has even weight. Is the converse true as well?

(12) Try to construct examples of codes of length 2, 4, and 6
satisfying C = C⊥.

8. EXERCISES ON BINARY LINEAR CODES 27

(13) Let A = (ai,j) be an n × n matrix with all ai,j ∈ F2 and
ai,j = aj,i for all i, j. Take b ∈ Fn

2 the column vector with
coordinates a1,1, a2,2, . . . , an,n. Prove that the equation Ax = b
has a solution x ∈ Fn

2 . (Hint: You may use Proposition 3.4-(1))

(14) Let C be an [n, k]-code with parity-check matrix

H :=

1 0 1 1 1
0 1 0 0 1
1 1 0 0 0
1 0 1 1 0

 .

(a) Determine n and k.
(b) What can we say about the minimal distance?

(15) Determine all [3, 3, 1] codes up to equivalence.

(16) Construct a binary code C of length 6 as follows: for every
(x1, x2, x3) ∈ F3

2, construct a 6-bit word (x1, x2, x3, x4, x5, x6) ∈
C, where

x4 = x1 + x2 + x3,

x5 = x1 + x3,

x6 = x2 + x3.

(i) Show that C is a linear code.
(ii) Find a generator matrix and a parity-check matrix for C.

(17) Show that for m ≥ 2, the generalised Hamming code H(m)
contains the word 11 . . . 1 consisting of ones only.

(18) Calculate the number of words of weight 4 in the generalised
Hamming code H(4). Which weights occur in the code H(4)?

(19) Show that if the binary linear code C contains the word
11 . . . 1 consisting of ones only, then the enumerator satisfies
WC(x, y) = WC(y, x).

(20) In the text it is indicated that the Hamming code H is
equivalent to a cyclic code. Find the generator of this cyclic
code.

(21) If C is a cyclic code, show that the subset of all words with
even weight is a cyclic code as well.

28 1. BINARY CODES

(22) Let C = {(a0, . . . , an−1) ∈ Fn
2 :

∑n−1
i=0 ai = 0}. Show that C

is cyclic code and determine its generator.

(23) Determine the smallest possible length for a cyclic code C for
which 1 + x+ x2 + x4 + x6 is the generating polynomial.

(24) Determine the following:
(i) the number of binary cyclic codes of length 21;
(ii) all values k for which there exists a binary [21, k]-cyclic

code;
(iii) the number of binary [21, 12]-cyclic codes;
(iv) the generator polynomial for each of the binary [21, 12]-

cyclic codes.
(25) Let n and m be integers with n ≥ 1. Define the linear map

ϕ : Rn → Rn by ϕ(xa) := xma mod (xn + 1).
(a) Show that if ϕ is surjective and C ⊂ Rn is a linear cyclic

code, then so is ϕ(C).
(b) Show that if gcd(n,m) = 1, then ϕ is bijective, and it

permutes the coordinates of code words.
(c) Consider the special case n = 7 and m = 3, and let C be

the linear cyclic code in R7 with generator x3 + x + 1.
Find the generator of the code ϕ(C).

(26) Let g(x) = 1 + x4 + x6 + x7 + x8 ∈ F2[x] be the generator
polynomial of a binary [15, 7]-cyclic code C. Write a gener-
ator matrix and a parity-check matrix for C. Construct a
generator matrix of in the standard form.

(27) Let C be a binary cyclic code of length n ≥ 3 with generator
polynomial g(x) 6= 1, where n is the smallest positive integer
for which xn + 1 is divisible by g(x). Show that C has
minimum distance at least 3.

(28) A codeword e(x) of a binary cyclic code C of length n is
called an idempotent if e2(x) = e(x) mod xn + 1. If an
idempotent e(x) is also a generator of C, it is called a
generating idempotent. Let g(x) be the generator polynomial
of a binary cyclic code C and let h(x) ∈ F2[x] be such that
(xn + 1) = g(x)h(x).

(i) Show that if gcd(g(x), h(x)) = 1 then C has a unique
generating idempotent. (Hint: Bézout’s identity holds
in F2[x].)
In particular, show that if n is odd, then there always
exists a unique generating idempotent for a binary cyclic

8. EXERCISES ON BINARY LINEAR CODES 29

code of length n. (Hint: If k ≥ 2 and g(x)k divides
f(x) then g(x) also divides the formal derivative f ′(x) of
f(x). Here the formal derivative f ′ is simply defined by
the linear operator xn 7→ nxn−1 that satisfies the usual
product rule).

(ii) Consider H ′ consisting of all strings
(d1, d2, d4, d3, p2, p1, p3) with di and pj satisfying the
same properties used to define the [7, 4, 3] Hamming code
H (see page 5 of the lecture notes for the definition).
Show that H ′ is a cyclic code equivalent to H and find
its generating idempotent element.

(29) Let C be a binary cyclic code of length n generated by a poly-
nomial g(x) that divides (xn + 1).
(i) Prove that, if g(x) is divisible by x+ 1, then all the code-

words have even weight.
(ii) Suppose n is odd. Show that the all-one vector

(1, · · · , 1) ∈ Fn
2 is a codeword in C if and only if g(x)

is not divisible by x+ 1.
(iii) Suppose n is odd. Show that C contains a codeword of

odd weight if and only if the all-one vector (1, · · · , 1) ∈ Fn
2

is a codeword.

CHAPTER 2

Security

1. Advanced Encryption Standard

In 2001 the American National Institute of Standards and Technol-
ogy (NIST) announced a new data-encryption system for safeguarding
sensitive information: the AES (Advanced Encryption Standard). This
replaces the older DES (Data Encryption Standard), which has been
used since 1976. By now, the AES is used internationally for a lot
of data transmission. For example, the American National Security
Agency (NSA) recommends AES, and therefore it is used by (among
others) the American government for all its secret and top-secret data
transmission. Various data compression algorithms (e.g., WinRAR and
WinZip) offer possibilities to secure data by means of the AES.

The AES is a special case of the system ‘Rijndael’, invented in
Leuven by Vincent Rijmen and Joan Daemen. A short mathematical
explanation of it was offered in 2002 by professor H.W. Lenstra from
Leiden University. His text can be found at the end of this section; we
now supplement it with additional details.

In the AES, the data one wishes to protect is first subdivided into
blocks (‘states’) consisting of 16 bytes (so, a state contains 16 · 8 =
128 bits). Furthermore, there is a secret ‘key’, which is also a block
consisting of 16 bytes. For some applications such as ‘top-secret’ data,
keys of 24 or even 32 bytes are used. By means of this key a bijection
from the set of ‘states’ to the set of ‘states’ is constructed. Applying
this bijection to the ‘states’ we want to protect, results in new data.
Reconstructing the original data from it is easy using the secret key,
however without the key it appears extremely difficult to invert the
bijection used, and thus to decrypt the protected data.

Bytes. The space of all possible bytes is by definition F8
2. Just as

for cyclic codes of length 8, we sometimes identify this space with
R8 := F2[x]/(x8 + 1). Compared with the case of cyclic codes, this is
done in reverse here: identify (a7, a6, a5, . . . , a1, a0) with a7x

7 + a6x
6 +

. . . + a1x + a0. Multiplication by x in R8 is therefore the same as
‘shifting everything one position to the left’ in F8

2. The map

λ : R8 → R8, f 7→ (x4+x3+x2+x+1)f+x6+x5+x+1 mod (x8+1)

31

32 2. SECURITY

is a bijection on the space of bytes: namely, λ = τg ◦ µh, with τg the
translation over g = x6 +x5 +x+ 1 and µh the multiplication (modulo
x8+1) by h = x4+x3+x2+x+1. Hence λ is a bijection provided both
τg and µh are. Every translation is indeed bijective (with translation
over the opposite vector as inverse; so in this case τ−1g = τg). It remains
to show that µh is invertible.

For this we note that in F2[x] one has (1 + x)2 = 1 + x2, and hence
(1 + x)4 = (1 + x2)2 = 1 + x4, so finally (1 + x)8 = (1 + x4)2 = 1 + x8.
So 1 +x8 factors as the eighth power of 1 +x. This 1 +x is no factor of
h = x4 +x3 +x2 +x+1, since otherwise h(1) = 0. So h and s := 1+x8

have no common factor (except 1).
The extended Euclidean algorithm will therefore provide a linear

combination of h and s equal to 1. Explicitly:

0·h + 1 ·s = x8 + 1
1·h + 0 ·s = x4 + x3 + x2 + x+ 1
x4 ·h + 1·s = x7 + x6 + x5 + x4 + 1

(x3 + x4)·h + 1·s = x3 + 1
(1 + x4 + x5)·h + x·s = x3 + x2 + 1
(1 + x3 + x5)·h + (1 + x) ·s = x2

(1 + x+ x5 + x6)·h + x2 ·s = x2 + 1
(x+ x3 + x6)·h + (1 + x+ x2) ·s = 1.

Check for yourself how these lines were obtained; the first and second
are evident, and subsequent lines are linear combinations of the two di-
rectly preceding ones, in such a way that the right-hand-side has degree
below the expression two lines above it. The bottom line, considered
modulo s = x8 + 1, yields that (x+ x3 + x6)h ≡ 1 mod (x8 + 1).

Conclusion: µx+x3+x6 satisfies

µx+x3+x6 ◦ µh(f) = (x+ x3 + x6)hf mod (x8 + 1) = f mod (x8 + 1)

and also µh ◦ µx+x3+x6(f) = f mod (x8 + 1), for every f .
Hence µh is invertible, with µ−1h = µx+x3+x6 . This provides the

inverse for λ as well, namely

λ−1 = µ−1h ◦ τg = µx+x3+x6 ◦ τg.
So this map sends an f to (x + x3 + x6)(f + g) mod (x8 + 1). Since
(x+x3 +x6)(x6 +x5 +x+ 1) ≡ x2 + 1 mod (x8 + 1), we have a simpler
description:

λ−1(f) = (x+ x3 + x6)f + x2 + 1 mod (x8 + 1).

Calculating in a structure such as F2[x]/(x8 + 1) may be done, using
the Magma package, as follows.

F2:=GF(2);

P<X>:=PolynomialRing(F2);

I:=ideal<P | X^8+1 >;

R<x>:=P/I;

1. ADVANCED ENCRYPTION STANDARD 33

la:=function(f)

return R!((1+x+x^2+x^3+x^4)*R!f+x^6+x^5+x+1);

end function;

g:=1+x^5; g;

la(g);

la(la(g));

la(la(la(g)));

la(la(la(la(g))));

A second bijection on bytes we now discuss, uses modular arithmetic
with polynomials as well. In this case not modulo x8 + 1 in analogy
with coding theory, but modulo m, where

m = x8 + x4 + x3 + x+ 1.

Calculating in F2[x]/(m) works as expected: f ≡ g mod (m) means
that f+g is a multiple of m. In this way, using division with remainder
by m, every polynomial is equivalent to a polynomial of degree < 8.
And if f, g both have degree < 8, then f ≡ g mod (m) if and only if
f = g. So F2[x]/(m) can be identified with the space of all bytes, and
multiplication modulo (m) yields an operation on this space.

There is a big difference between multiplication modulo (x8+1) and
modulo (m). The reason for this is the fact that m is irreducible: m is
not a multiple of any polynomial of positive degree < 8. This can be
verified using a rather long and boring computation, or alternatively,
using a system such as Magma, and typing

F2 := GF(2);

P<x> := PolynomialRing(F2);

Factorization(x^8+x^4+x^3+x+1);

This property has a strong consequence: take any g ∈ F2[x] of
degree < 8, and g 6= 0. Then g and m have no common factor 6= 1.
The extended Euclidean algorithm therefore yields a linear combination
pg + qm = 1, for certain polynomials p, q. Modulo m this means that
p is an inverse of g. So every g 6= 0 in F2[x]/(m) has an inverse.

So in F2[x]/(m) one can not only add/substract and multiply, but
also divide (=multiply by the inverse). Note that such an inverse is
unique: is pg ≡ p′g ≡ 1 mod (m), then g(p + p′) ≡ 0 mod (m), and
multiplying this by p shows p + p′ ≡ 0 mod (m) which means p ≡
p′ mod (m). The inverse of g is denoted g−1.

So it holds that F2[x]/(m) is a field, consisting of 28 = 256 elements.
We also write F256 for this field.

The map

σ : F8
2 → F8

2, f 7→
{
λ(0) = x6 + x5 + x+ 1 if f = 0;
λ((f mod (m))−1) otherwise

34 2. SECURITY

in the AES is called the S-box. It is a bijection on the space of bytes,
because the map F256 → F256 sending 0 to 0 and inverting all other
elements, is its own inverse, and the composition of it with the also
invertible λ yields σ.

From Lenstra’s text on this subject one may conclude, that the
order of σ (the minimal number n > 0 such that applying σ n times
yields the identity) equals 2 · 34 · 29 · 59 = 277182. Nevertheless, σ is
just a composition of a bijection of order 2 (namely, inversion in F256)
and a bijection of order 4 (namely λ). Determining the order of σ is
without a computer quite cumbersome; Using, e.g., Magma or Maple
or Mathematica turns it into a pleasant exercise!

A natural question is why the polynomial h = x4 + x3 + x2 +
x + 1 (with the necessary property h(1) 6= 0) and the polynomial
g = x6 + x5 + x + 1 and the (necessarily irreducible) polynomial
m = x8 + x4 + x3 + x + 1 are used in defining the S-box, instead
of other polynomials. A partial answer to this question is given in
the bachelor’s thesis (written in Dutch) of Petra Klooster (2014), see
http://fse.studenttheses.ub.rug.nl/11887/.

Words. A word is by definition a tuple w = (b0, b1, b2, b3) in which
the bj are bytes. The map σ described above, provides a bijection on
words which we denote by σ as well:

σ(w) = σ(b0, b1, b2, b3) := (σ(b0), σ(b1), σ(b2), σ(b3)) .

A second operation on words (which in fact will only be used on
parts of the secret key) is called ξ; it is given as

ξ(w) = ξ(b0, b1, b2, b3) := (σ(b1), σ(b2), σ(b3), σ(b0)) .

So the map ξ can be regarded as a shift on the 4 bytes in a word,
followed by the map σ.

As an alternative description: write w = (b0, b1, b2, b3) as a polyno-
mial b0 + b1y + b2y

2 + b3y
3, then ξ(w) = σ(y3w mod (y4 + 1)).

In a similar way we define bijections µ, ν on words: take (x, 1, 1, x+
1) ∈ (F2[x]/(m))4. Regard this as the element

c := x+ y + y2 + xy3 + y3 ∈ (F2[x]/(m)) [y]/(y4 + 1).

So, here we view a word as a polynomial

c0(x) + c1(x)y + c2(x)y2 + c3(x)y3

in the variables x and y, with coefficients in F2. Such polynomials we
multiply, with the agreement that powers of y are considered modulo
y4 + 1. To put it differently: we agree that yn = ym as soon as m ≡
n mod 4. And considering the polynomials cj(x) ∈ F2[x] we have here,
we agree to compute with them modulo m = x8 + x4 + x3 + x + 1.
Under these conditions, the map µ on words, defined for any word

http://fse.studenttheses.ub.rug.nl/11887/

1. ADVANCED ENCRYPTION STANDARD 35

w = c0(x) + c1(x)y + c2(x)y2 + c3(x)y3, is defined by

µ(w) := c · w.
With

d := x3 + x2 + x+ x3y + y + x3y2 + x2y2 + y2 + x3y3 + xy3 + y3

one defines similarly the map ν on words by

ν(w) := d · w.
An important observation is here, that µ and ν are indeed bijections
on the set of words. This is a simple consequence of the fact that

c · d ≡ 1 mod (y4 + 1),

which is easily verified.
In F2[x, y]/(m, y4 + 1) (so, the polynomials in x and y considered

modulo m as well as modulo y4 + 1) it holds that c4 = d4 = 1. This
implies µ−1 = µ3 = ν and ν−1 = ν3 = µ.

Example: consider the word

w = 00010010 00100100 01001000 10000001.

As a tuple of four polynomials this is (x4 + x, x5 + x2, x6 + x3, x7 + 1)
and as a polynomial in x and y it is

w = x4 + x+ x5y + x2y + x6y2 + x3y2 + x7y3 + y3.

By definition ξ(w) = σ(x5 +x2, x6 +x3, x7 + 1, x4 +x) and this is com-
puted by the action of σ on bytes. To do this manually, the extended
Euclidean algorithm needs to be done four times, followed by four times
the map λ on bytes. Evidently this is rather elaborate. Using software
such as Magma and the code we used to compute the map λ, it appears
as follows:

sigma := function(f)

if f eq 0 then

return la(0);

else

I:=ideal<P | X^8+X^4+X^3+X+1 >;

R<x>:=P/I;

return la(P!((R!(f))^(-1)));

end if;

end function;

sigma(X^5+X^2);

In this way we find

ξ(w) = (x5 + x4 + x2 + x, x6 + x4 + x, x3 + x2, x7 + x6 + x3 + 1),

or, expressed as a sequence of zeros and ones,

ξ(w) = 00110110 01010010 00001100 11001001.

36 2. SECURITY

The image of w under the map µ can be expressed, using Maple, as a
polynomial in x and y as follows (we show at the same time how to
verify that the polynomials c, d satisfy c · d ≡ 1 mod (y4 + 1)).

F2 := GF(2);

P<X,Y> := PolynomialRing(F2,2);

I:=ideal<P | [X^8+X^4+X^3+X+1,Y^4+1] >;

R<x,y>:=P/I;

c:= x+y+y^2+x*y^3+y^3;

d:=x^3+x^2+x+x^3*y+y+x^3*y^2+

x^2*y^2+y^2+x^3*y^3+x*y^3+y^3;

c*d;

mu := function (w)

return c*w;

end function;

mu(x^4+x+x^5*y+x^2*y+x^6*y^2+x^3*y^2+x^7*y^3+y^3);

Check for yourself that this results in

µ(w) = 10000001 00000011 00111110 01000011.

States. A ‘state’ is by definition a tuple s = (w0, w1, w2, w3) consist-
ing of four words wj. The maps µ, ν and σ which we already know on
words, yield maps from states to states by applying them coordinate-
wise.

As an example,

σ(w0, w1, w2, w3) = (σ(w0), σ(w1), σ(w2), σ(w3)).

Another quite simple operation on states is the translation, in cryp-
tography also called ‘blinding’, and in computer science ‘xor’. Given a
fixed state s, we denote the translation over s by τs. On any state x it
is given by

τs(x) = x+ s.

Observe that doing τs twice results in the original state. In other words,
τs equals its inverse: τ−1s = τs.

All operations considered on states so far, are in fact maps on the
four words in a state separately. To make the system more complex,
also some map ‘mixing’ the four words in a state is needed. This is
done by means of a map called ρ. To define it, we write the state s as

s = (w0, w1, w2, w3)

for words wj. Consider these words as column vectors

w0 =

a1
a2
a3
a4

 , w1 =

b1
b2
b3
b4

 , w2 =

c1
c2
c3
c4

 , w3 =

d1
d2
d3
d4

 .

1. ADVANCED ENCRYPTION STANDARD 37

Here the aj, bj, cj and dj are bytes. In this way the state s is regarded
as a 4 × 4 matrix of bytes, and its columns are the four words in s.
Now define

ρ(s) = ρ

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

 :=

a1 b1 c1 d1
b2 c2 d2 a2
c3 d3 a3 b3
d4 a4 b4 c4

 .

It is easy to verify that ρ ◦ ρ ◦ ρ ◦ ρ = id, hence ρ−1 = ρ3.

The key. The secret key used for encrypting and decrypt-
ing messages with the AES, is a state k = (w0, w1, w2, w3)
consisting of four (secret) words wj. Since 28 different
bytes exist, there are 232 different words and therefore
2128 = 340.282.366.920.938.463.463.374.607.431.768.211.456 possi-
ble keys. This makes the probability of finding it by (repeatedly)
guessing, negligible.

Once a key has been agreed, the system begins by expanding the
tuple w0, . . . , w3 into a sequence w0, w1, , w42, w43, in which the
wj for j ≥ 4 are determined as follows:

wj :=

{
ξ(wj−1) + wj−4 + x(j−4)/4 mod (m, y4 + 1) if j ≡ 0 mod 4;
wj−1 + wj−4 otherwise.

Finally the AES. The sequence of words (wj) constructed above
yields for j = 0, . . . , 10 the states

kj := (w4j, w4j+1, w4j+2, w4j+3).

So k0 = k is the initial key and the other kj have been constructed
from it. Encryption according to the AES with key k is defined as the
bijection

εk : {states} −→ {states}
given by

εk = τk10ρστk9µρστk8µρστk7µρστk6µρστk5µρστk4µρστk3µρστk2µρστk1µρστk0 .

This indeed defines a bijection since each of the involved maps ρ, τkj , σ
and µ is bijective.

It is easy to describe the inverse of εk, the map that decrypts an
encrypted message, in terms of the known inverses ρ−1 = ρ3, τ−1kj

= τkj ,

σ−1 (the latter can be described in terms of the maps λ3 and inversion
in F2[x]/m), and µ−1 = ν = µ3.

Leiden professor H.W. Lenstra summarised all of this in one page,
as follows:

38 2. SECURITY

Rijndael for algebraists H.W. Lenstra, Jr. April 8, 2002

This page deals only with Rijndael with block length 128 and key length 128.

Bytes.A bit is an element of F2 = Z/2Z. Eight bits form one byte. The space F8
2 of all bytes

is identified with {f ∈ F2[X] : deg f < 8} by (b7b6b5b4b3b2b1b0) =
∑7

h=0 bhX
h. Define the

affine map λ:F8
2 → F8

2 by λ(f) ≡ (X4+X3+X2+X+1)·f+X6+X5+X+1 mod (X8+1).

The inverse λ−1 = λ3 is given by λ−1(f) ≡ (X6 + X3 + X)·f + X2 + 1 mod (X8 + 1).

All other operations on {f ∈ F2[X] : deg f < 8} will be done not mod X8 + 1 but mod

m = X8+X4+X3+X+1, so that F8
2 becomes identified with the field F256 = F2[X]/(m).

Define the map σ:F256 → F256 by σ(a) = λ(a254); here a254 = a−1 for a 6= 0. The cycle

lengths of σ are 2, 27, 59, 81, and 87, and σ−1 = σ277181 is given by σ−1(a) = (λ−1(a))254.

Words. Four bytes form one word. The map from the space F4
256 (= F32

2) of all words to

itself sending (ai)
3
i=0 to (σ(ai))

3
i=0 is again denoted by σ. The map ξ:F4

256 → F4
256 is defined

by ξ((ai)
3
i=0) = (σ(ai+1))

3
i=0 (indices mod 4). Write c = (X, 1, 1, X + 1) and d = (X3 +

X2+X,X3+1, X3+X2+1, X3+X+1), and identify F4
256 with {g ∈ F256[Y] : deg g < 4}

by (a0, a1, a2, a3) =
∑3

i=0 aiY
i. Define µ, ν:F4

256 → F4
256 by µ(g) ≡ c · g mod (Y 4 +1) and

ν(g) ≡ d·g mod (Y 4 + 1). One has ν = µ−1 = µ3.

States. Four words form one state. The maps from the space S = (F4
256)

4 (= F128
2) of all

states to itself sending (wj)
3
j=0 to (µ(wj))

3
j=0, to (ν(wj))

3
j=0, and to (σ(wj))

3
j=0 are again

denoted by µ, ν, and σ, respectively. Define ρ:S → S by ρ(((ai,j)
3
i=0)

3
j=0) = ((ai,i+j)

3
i=0)

3
j=0

(indices mod 4). If a state is written as a 4 × 4-matrix, each column being a word, then

ρ shifts the entries in row i cyclically i places to the left (0 ≤ i ≤ 3); similarly, ρ−1 = ρ3

shifts row i cyclically i places to the right. One has ρσ = σρ. For s ∈ S, the map τs:S → S
is defined by τs(x) = x+ s; one has τ−1

s = τs and µτs = τµ(s)µ.

Key expansion. The key space K equals S. For fixed k = (wj)
3
j=0 ∈ K, define inductively

w4, w5, . . . , w43 ∈ F4
256 by wj = wj−1 + wj−4 if j 6≡ 0 mod 4 and wj = ξ(wj−1) +

wj−4 + (X(j−4)/4, 0, 0, 0) if j ≡ 0 mod 4, and put kl = (w4l, w4l+1, w4l+2, w4l+3) ∈ S for

0 ≤ l ≤ 10.

Encryption and decryption. Messages are divided in blocks of 128 bits each. Each block

belongs to S. Given a key k ∈ K, a block is encrypted by means of the encryption function

εk:S → S defined by

εk = τk10
ρστk9

µρστk8
µρστk7

µρστk6
µρστk5

µρστk4
µρστk3

µρστk2
µρστk1

µρστk0

(nine µ’s, ten ρ’s, ten σ’s, and eleven τ ’s; composition is from right to left). The corre-

sponding decryption function δk = ε−1
k is given by

δk = τk0ρ
−1σ−1τν(k1)νρ

−1σ−1τν(k2)νρ
−1σ−1τν(k3)νρ

−1σ−1τν(k4)νρ
−1σ−1 ◦

◦ τν(k5)νρ
−1σ−1τν(k6)νρ

−1σ−1τν(k7)νρ
−1σ−1τν(k8)νρ

−1σ−1τν(k9)νρ
−1σ−1τk10

.

2. DH AND RSA AND ELGAMAL SIGNATURES 39

2. DH and RSA and ElGamal signatures

In this section we briefly discuss an elementary number theoretic
fact. After this we treat three well known applications of it in cryptog-
raphy: the Diffie-Helman key exchange protocol, the Rivest-Shamir-
Adleman public key cryptosystem and the ElGamal digital signatures.

Let N 6= 0 be an integer. The group of all units modulo N , denoted
as (Z/NZ)∗, consists by definition of all classes a mod N = a + NZ
which are units modulo N . This means that b mod N exists such that

(a mod N) · (b mod N) = 1 mod N.

Such b mod N exists precisely when gcd(a,N) = 1. Namely, the con-
dition of being a unit can be written as the existence of integers b, c
satisfying

ba+ cN = 1,

and the extended Euclidean algorithm shows that these exist (and are
easily found!) precisely when gcd(a,N) = 1.

The number of elements in the group (Z/NZ)∗ is denoted by ϕ(N).
The map ϕ, which assigns to every integer 6= 0 a positive integer, is
called the Euler-ϕ-function or sometimes the Euler-totient-function.

In any finite group G it holds that if n = #G and g ∈ G, then
gn equals the unit element of G. A proof of this assertion can be
found in essentially every introductory text on the theory of groups.
In particular, for all a mod N ∈ (Z/NZ)∗ one has

aϕ(N) ≡ 1 mod N.

A proof for this, using the commutativity of multiplication in (Z/NZ)∗,
runs as follows. Write P for the product of all elements in (Z/NZ)∗.
Then also P is an element of this group. Now

P =
∏

b mod N∈(Z/NZ)∗(b mod N)

=
∏

b mod N∈(Z/NZ)∗(ab mod N) = (aϕ(N) mod N) · P,

since multiplication by a mod N is a bijection on the group (Z/NZ)∗.
Multiplying by the inverse of P then proves the assertion.

We briefly consider two special cases.

If N = p is a prime number, then ϕ(N) = N − 1. Incidentally, the
converse holds as well: is ϕ(N) = N − 1, then N is prime. Namely,
since ϕ(1) = 1, the condition implies N ≥ 2. Therefore 0 mod N is not
a unit modulo N , and hence all other a mod N have to be units. This
means gcd(a,N) = 1 for all a such that 1 ≤ a ≤ N − 1, which shows
that N is prime.

For a prime number p it turns out that

ap−1 ≡ 1 mod p

40 2. SECURITY

whenever a is not divisible by p. This is the celebrated “Fermat’s little
theorem”.

For N = pq with p and q two distinct prime numbers, one has ϕ(pq) =
(p − 1)(q − 1). Namely, the a with 1 ≤ a ≤ pq which do not satisfy
gcd(a, pq) = 1, are

p, 2p, , qp and q, 2q, , pq.

These are q+p−1 numbers, hence ϕ(pq) = pq−p−q+1 = (p−1)(q−1).
So for this case

a(p−1)(q−1) ≡ 1 mod pq

for all a satisfying gcd(a, pq) = 1.

Every element a mod N in (Z/NZ)∗ has an order; this is (a well
known definition from group theory) the smallest integer d > 0 such
that ad ≡ 1 mod N . The following properties hold.

Lemma 2.1. The order of elements a mod N, b mod N ∈ (Z/NZ)∗

satisfies

(1) order(a mod N) divides ϕ(N);
(2) if am ≡ 1 mod N , then m is a multiple of order(a mod N);
(3) if order(a mod N) = d and order(b mod N) = e with

gcd(d, e) = 1, then order(ab mod N) = de;
(4) for p prime and d > 0, the group (Z/pZ)∗ has at most d ele-

ments of order dividing d.

Proof. (1.) Write d := order(a mod N) and take e := gcd(d, ϕ(N)).
Then e = xd+ yϕ(N) for certain integers x, y, hence since ad ≡ 1 mod
N and also aϕ(N) ≡ 1 mod N , it follows that

ae ≡ 1 mod N.

Now e > 0 and e|d and d is the smallest integer such that ad ≡ 1 mod
N , hence d = e. Since e|ϕ(N), one concludes d|ϕ(N).
(2.) This is the same argument as given in (1.), with the role of ϕ(N)
replaced by m.
(3.) Put c := order(ab mod N). Since (ab)de mod N = 1 mod N , (2.)
implies c|de. But (ab)c = acbc, hence bc mod N is the inverse of ac mod
N . In particular,

order(ac mod N) = order(bc mod N).

By (2.), this order is a divisor of both d and e, because acd ≡ 1 mod N
and bce ≡ 1 mod N . Since gcd(d, e) = 1, this order equals 1. In other
words,

ac mod N = 1 mod N = bc mod N.

Now (2.) implies d|c and e|c, and since gcd(d, e) = 1 this implies de|c.
We already saw that c|de, so c = de follows.

2. DH AND RSA AND ELGAMAL SIGNATURES 41

(4.) The elements of order dividing d are zeros (in (Z/pZ)∗) of the
polynomial Xd − 1. If a1 up to at are pairwise distinct zeros of this
polynomial in (Z/pZ)∗, then write

Xd − 1̄ = (X − a1) · . . . · (X − at)Q
for some polynomial Q with coefficients in Z/pZ (using mathematical
induction with respect to t one can take out the factors X − aj one by
one). Comparing degrees then shows t ≤ d. �

A legitimate question is, where exactly in the proof of (4.) as given
above, one uses that p is prime. This happens when taking out the
factors X − aj. Consider as an example N = 8. The elements in
(Z/8Z)∗ of order dividing 2 are 1 = 1 mod 8, 3 = 3 mod 8, 5 = 5 mod 8
and 7 = 7 mod 8. We start with the polynomial X2 − 1. It has all of
the above elements as zero. One can factor X2 − 1 = (X − 3)(X − 5),
but also X2 − 1 = (X − 7)(X − 1). However, after choosing one such
factor, it is not true that all other elements of order dividing 2 are zeros
of the remaining factor. This does hold in the case that N = p is prime.

Lemma 2.1 has an important consequence:

Theorem 2.2. For p prime, the group (Z/pZ)∗ contains an element
g mod p with order(g mod p) = p− 1.

Proof. Let d ≥ 1 be the largest integer occurring as the order of
some element of (Z/pZ)∗. Part (1.) of Lemma 2.1 says that d|ϕ(p) =
p− 1, so in particular d ≤ p− 1.

Consider any a mod p ∈ (Z/pZ)∗ and put e := order(a mod p). We
claim that e|d. Since d occurs as order of an element, take b mod p
with order(b mod p) = d. If e were not a divisor of d, then some
prime number ` exists, such that e contains more factors ` than d, i.e.,
e = `me1 and d = `nd1 for integers d1, e1,m, n with m > n ≥ 0 and d1
not divisible by `. Since e = order(a mod p), it follows that ae1 mod p
has order `m. Similarly b`

n
mod p has order d1. But gcd(`m, d1) = 1,

hence part (3.) of Lemma 2.1 implies that

order(ae1b`
n

mod p) = `md1 > `nd1 = d,

contradicting the definition of d.
We conclude that every element of (Z/pZ)∗ has an order dividing

d, and therefore part (4.) of Lemma 2.1 shows p − 1 ≤ d. Since we
already know the reverse inequality, p−1 = d follows. This is precisely
what we wanted to prove. �

Definition 2.3. For p prime, any g mod p ∈ (Z/pZ)∗ with
order(g mod p) = p− 1 is called a primitive root modulo p.

Theorem 2.2 asserts that primitive roots modulo p exist, for
every prime p. The presented proof is a typical example of

42 2. SECURITY

a nonconstructive existence proof: it does not provide an effi-
cient algorithm for finding such a primitive root. Various proofs
of the same theorem, all nonconstructive, may be found on the
site http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/cyclicmodp.pdf, by the
American mathematician Keith Conrad.

2.4. Discrete logarithms.
Given a prime p and a primitive root g mod p ∈ (Z/pZ)∗, we know that
for 0 ≤ i < j < p − 1 the powers gi mod p and gj mod p are distinct:
namely, multiplication by the inverse of gi mod p yields 1 mod p and
gj−i mod p, which differ since 0 < j − i < p − 1 = order(g mod p). In
particular this shows that p− 1 distinct powers of g mod p exist. Since
(Z/pZ)∗ contains precisely p − 1 elements, one concludes that every
a mod p ∈ (Z/pZ)∗ can be written as

a mod p = gm mod p,

for a unique m with 0 ≤ m < p − 1. This m is called the discrete
logarithm of a mod p (with respect to g mod p).

We now sketch a method to obtain some information about this
discrete logarithm of a mod p for a given primitive root g mod p. First
observe that for given integers k,m one has

gk mod p = gm mod p
⇔

g|k−m| mod p = 1 mod p
⇔

p− 1|k −m
⇔

k ≡ m mod (p− 1).

(Here Lemma 2.1 is used to show the middle equivalence.) So, once any
k is found such that gk mod p = a mod p, then the discrete logarithm
of a mod p is obtained as the remainder of the division of k by (p− 1).

We assume from now on that p is odd (the case p = 2 is unin-
teresting). This implies that (p − 1)/2 is a positive integer < p − 1,
hence

a := g(p−1)/2 mod p

satisfies a 6= 1 mod p and a2 = 1 mod p. Part (4) of Lemma 2.1 then
implies a = −1 mod p. Conclusion:

g(p−1)/2 mod p = −1.

We call a mod p a square modulo p if b mod p exists with b2 mod p =
a mod p.

Lemma 2.5. a mod p ∈ (Z/pZ)∗ is a square modulo p if and only
if a(p−1)/2 = 1 mod p.

https://kconrad.math.uconn.edu/blurbs/grouptheory/cyclicmodp.pdf

2. DH AND RSA AND ELGAMAL SIGNATURES 43

Proof. ⇒: Suppose a mod p = b2 mod p. Then using Fermat’s
little theorem a(p−1)/2 mod p = bp−1 mod p = 1 mod p.
⇐: Suppose a(p−1)/2 mod p = 1. Write a mod p = gm mod p, then
gm(p−1)/2 mod p = 1. By Lemma 2.1 therefore (p − 1)|m(p − 1)/2, so
an integer k exists with (p − 1)k = m(p − 1)/2, i.e., m = 2k. Hence
a mod p = g2k mod p, which is a square modulo p. �

The criterion given here yields a very efficient test to check whether
some a mod p is a square modulo p. Namely, a(p−1)/2 mod p can be
calculated, by repeatedly squaring modulo p, in roughly log(p) steps.
Each step here requires (approximately) (log(p))2 time units.

Conclusion: the last bit of the discrete logarithm m of a mod p is
easily determined: m is even when a mod p is a square, otherwise m is
odd. In fact this kind of information is obtained by using that the order
p− 1 of any primitive root modulo p is even. Writing p− 1 = 2en with
n an integer, and a mod p = gm mod p, it is even possible to determine
m mod 2e efficiently. In the applications it is undesirable that such
information is obtained so easily. To prevent it, one chooses the prime
number p in such a way that

p− 1 = ` · k
with k a small integer and ` a large prime. Instead of a primitive root
g mod p, one now takes

h = h mod p := gk mod p.

By construction order(h mod p) = `, and

H :=
{
h, h

2
, . . . , h

`−1
, h

`
= 1
}

is a subgroup of (Z/pZ)∗ consisting of precisely ` elements. Every
a mod p ∈ H can be written as h

m
. About such m, which is well-

defined up to multiples of `, it is in general much more difficult to
obtain information.

2.6. Extracting square roots modulo p. In the subgroup H
described at the end of the previous section, one has a` ≡ 1 mod p for
all a mod p ∈ H. As a consequence, a`+1 ≡ a mod p, and since `+ 1 is
even, j := (`+1)/2 is a positive integer. Hence aj mod p is defined, and
its square is a mod p. So extracting square roots is very simple in H. A
similar idea is used in the so-called Tonelli-Shanks algorithm. Given an
odd prime p and a square a = a mod p ∈ (Z/pZ)∗ (in other words, by
Lemma 2.5, a(p−1)/2 = 1), and moreover given b = b mod p ∈ (Z/pZ)∗

which is not a square (so, again by Lemma 2.5, b
(p−1)/2

= −1), this
algorithm finds a square root of a in the following way:
the Tonelli-Shanks algorithm

44 2. SECURITY

• Define positive integers s, q (with q odd) by

p− 1 = q · 2s.

• Put r := a(q+1)/2 and t := aq, then

r2 = aq+1 = t · a.
So if it were true that t = 1, then a square root of a is found,
namely r.

The desired equality t = 1 can be rephrased as order(t) =
1. For this reason we now study the order of t in the group
(Z/pZ)∗ more closely. Fix a primitive root g ∈ (Z/pZ)∗; it
exists by Theorem 2.2. Since a is a square, an integer m exists
such that a = g2m. It follows that

t
2s−1

= aq2
s−1

= gm(p−1) = 1,

so by Lemma 2.1 we conclude that order(t) divides 2s−1.
Therefore

order(t) = 2i

with 0 ≤ i ≤ s− 1.
As discussed, if i = 0 then t = 1 and we have found a

square root of a. We may therefore assume i > 0. The idea
is to adjust t and r in such a way, that the identity r2 = a · t
remains valid, and moreover order of t changes into a smaller
power of 2. This will be achieved by using b ∈ (Z/pZ)∗, the
given non-square.
• We have

order(b
q
) = 2s,

since (b
q
)2

s
= b

p−1
= 1, and (b

q
)2

s−1
= b

(p−1)/2
= −1 (here it

is used that b is not a square!). Put c := b
q
. Using c we will

construct a square which has the same order as t.
We know order(t) = 2i with 1 ≤ i ≤ s − 1, so s − i ≥ 1.

Consider the sequence

c, c2, c4, . . . , c2
s−i

.

Since c has order 2s, the order of c2 equals 2s−1, and that of
c4 is 2s−2. Continuing like this one finds

order(c2
s−i

) = 2s−(s−i) = 2i.

So we found an element of the same order as t. Moreover, it
is a square, since s− i ≥ 1 and therefore 2s−i is even.
• A square root of e := c2

s−i
is d := c2

s−i−1
. Multiplying both

sides of r2 = at by d
2

= e one obtains

(rd)2 = a · (te).
Claim: the order of te is a power of 2, strictly smaller than 2i.
This is seen as follows.

2. DH AND RSA AND ELGAMAL SIGNATURES 45

By construction both t and e have order 2i, and i ≥ 1.
Raising t and e to the power 2i−1, one obtains an element of

order 2 in (Z/pZ)∗. Conclusion: both t
2i−1

and e2
i−1

equal −1.
And therefore

(t · e)2i−1

= (−1)2 = 1.

Lemma 2.1 now implies that the order of t · e divides 2i−1,
which proves the claim.
• Repeating the steps above one finds a sequence of pairs (r, t),

satisfying r2 = a · t and with strictly decreasing powers of 2 as
the order of t. So after at most s− 1 steps we have t = 1, and
then r is a square root of a.

The Tonelli-Shanks algorithm needs a non-square b for extracting
square roots of squares. Precisely half the elements of (Z/pZ)∗ are non-
squares (namely, the odd powers of some primitive root). So in practice
a non-square is quickly found: after n times randomly selecting an
element from (Z/pZ)∗, the probability that all n elements are squares
equals 2−n.

2.7. Diffie-Hellman key exchange. The Diffie-Hellman key ex-
change is a protocol providing two parties A and B via a public channel
with a common secret key.

To this end, a prime number p is used such that p− 1 = `k where
` is a large prime, as well as h := gk mod p with g a primitive root
modulo p. The pair (p, h) is made public. Observe that order(h) = `.
The common secret key for A and B which will be constructed, is a
power of h in the group (Z/pZ)∗, as follows.

• As a first step, A should have a (secret) integer a, and A

computes h
a
. Similarly B needs a secret b and determines h

b
.

This h
a
, respectively h

b
, is now transmitted (via the public

channel!) to the other party.

• Next, A computes (h
b
)a = h

ab
, and B computes (h

a
)b = h

ab
.

This is their common secret key.

Since communication between A and B is done via a public channel,
we may assume that a third party (adversary) E interested in the
common secret key of A and B, also knows the pair (p, h), as well as

the values h
a

and h
b
. The security of the system therefore boils down

to the question: can E efficiently determine h
ab

, or at least partial

information about h
ab

, given (p, h, h
a
, h

b
)?

A way for E to achieve this, is using discrete logarithms modulo p:

first determine from h and h
a

the value a mod `, then from h and h
b

the value b mod `, and finally compute h
ab

using these values. Since
calculating discrete logarithms is in general difficult (i.e., no efficient

46 2. SECURITY

algorithm for it is known), it is not expected that along these lines the
common secret key of A and B can be found within a reasonable time.

No alternative way is known of efficiently finding from h and h
a

and h
b

the value h
ab

. The security of the Diffie-Hellman key exchange protocol
is based on the assumption that no fast way exists to do this calculation
without first determining a and b. If indeed we cannot construct such
a method (i.e., if we are sufficiently ignorant!), we have obtained a very
secure system. . .

2.8. Solving discrete logarithms. We have seen that the se-
curity of the Diffie-Hellman key exchange protocol depends on the as-
sumption that computing discrete logarithms is a hard problem. In the
following we present the Babystep-Giantstep-Algorithm due to Shanks
that solves this problem in a finite cyclic group. Suppose you are given
a finite cyclic group G = 〈g〉 (e.g. G = (Z/pZ)∗ for a prime p) and
an element a ∈ G. The goal is to find an integer 1 ≤ m < #G such
that a = gm. The idea behind the algorithm is that for a fixed positive
integer b there are unique integers q and r with m = bq + r, where
0 ≤ r < b. Rewriting the equation a = gm to a = gm = gbqgr and
multiplying both sides by g−bq, gives us that finding m is the same as
finding a pair (q, r) such that ag−bq = gr holds.

In the first part of the algorithm, the babysteps, the elements gk

for 0 ≤ k, b are computed. In the second part, the giantsteps, the
elements ag−bq for q = 1, 2, . . . are computed until one of the giantsteps
is equal to one of the babysteps. Such a collision is granted by the
considerations above.

We now discuss what is a good choice for the integer b. The first
observation is that for small b only a few babysteps are needed, while
a lot of giantsteps have to be computed. For large b it is the other
way around. The worst case scenario is given in the case when we
have to compute #G

b
giantsteps. Thus, in the worst case there are

#G
b

+ b computations in G needed. This number attains a minimum

for b ≈ √#G.

2.9. Rivest-Shamir-Adleman. The celebrated RSA (Rivest-
Shamir-Adleman) public key cryptosystem has, as the name suggests,
as an important feature that the key used for encryption, is public.
Hence this is totally different from, e.g., the AES, where it is essential
to keep the key secret. The advantage of a public key is obviously, that
it is not necessary to agree on a common shared key (for example using
Diffie-Hellman key exchange).

The safety of RSA relies on the assumption, that for general N
and e no efficient algorithm exists for extracting e-th roots of integers
modulo N . Taking here N = p prime and e = 2, we know from (2.6)
above that such an algorithm does exist. Even simpler, again for N = p

2. DH AND RSA AND ELGAMAL SIGNATURES 47

prime, if one takes e > 0 such that gcd(e, p−1) = 1, then an e-th root of
a ∈ Z/pZ is easily constructed as follows: compute using the extended
Euclidean algorithm d > 0 with ed ≡ 1 mod (p − 1). Then ad is the

desired root, because if a = 0 then clearly 0
d

= 0 works, and is a 6= 0,
then because p is prime, a ∈ (Z/pZ)∗ and

(ad)e = a · aed−1 = a · 1 = a,

since ed− 1 is a multiple of p− 1. So we found an e-th root of a.
RSA does not use a prime number N , but instead takes N a product

of two large distinct primes. The system works as follows.

• Take two large primes p 6= q and calculate N = pq. The
integer N is made public, but p and q are kept secret.
• One has ϕ(N) = (p−1)(q−1) as we saw earlier in this chapter.

The value ϕ(N) is also kept secret. Next, take e > 1 such that
gcd(e, ϕ(N)) = 1. This e is the public key.
• If anybody wants to send us a message m ∈ Z/NZ, he/she

computes me. This is the encrypted version of the message,
which is now sent to us.
• We know ϕ(N) as well as e, and e was chosen a unit modulo
ϕ(N). We can therefore compute d > 0 such that de ≡ 1 mod
ϕ(N). Then (me)d equals the original message m.

To see why this system works, we need to verify that mde = m for
every m. In other words: all m ∈ Z have the property that N divides
mde−m. Since N = pq with p and q distinct primes, this is equivalent
to the assertion that both p and q divide mde −m. Since de − 1 is a
multiple of ϕ(N) = (p − 1)(q − 1), it is a multiple of p − 1 and q − 1,
too. The same argument used above for extracting e-th roots modulo
p now finishes the reasoning.

It is clear why in this system ϕ(N) needs to be secret: e is public,
so knowing ϕ(N) it is easy to find d with de ≡ 1 mod ϕ(N), and this
compromises the system. If one knows the divisors p, q of N , one also
knows ϕ(N). Conversely, knowing ϕ(N) implies knowing the sum p+q
which is s := N + 1 − ϕ(N). Since N = pq, now p and q are the two
solutions of the equation

x2 − sx+N = 0,

which are easy to find. Factoring N is therefore equally difficult as
determining ϕ(N). Since we cannot do this efficiently for very large
N , this is not seen as a danger for the RSA system (NIST advises, at
present, to take p, q so large that N is roughly of size 22048).

One could imagine that some efficient algorithm exists for extract-
ing e-th roots modulo N , without using ϕ(N) or the prime factorisation
of N . Such an algorithm would make RSA unsafe. However, nobody
appears to have any idea how such an algorithm should look like, so

48 2. SECURITY

one assumes RSA to be secure. Of course then N = pq should be dif-
ficult to factor. For this reason one avoids primes p such that p + m,
for some integer m with |m| < 2

√
p, factors into many small primes.

As an example primes p with p + 1 = 2n (these are called Mersenne
primes) are unfit for RSA.

Although the description given here presents the basic idea of RSA,
in practice additional issues are necessary. For example: if the encryp-
tion key is public, then without further knowledge it will be hard to
verify that a received message was actually sent by the person assert-
ing he/she sent it. Solutions for this kind of problems exist, and one
of them is discussed in Section 2.10.

2.10. ElGamal digital signatures. Taher ElGamal obtained his
PhD in 1984 supervised by Martin Hellman, one of the two persons we
encountered describing the Diffie-Hellman protocol. He presented a
method to equip messages m with a digital signature. It works as
follows.

The messages m to be sent, are taken from some set M . This could
be Z/NZ (as in the case of RSA), or the set of ‘states’ when using AES,
or (as with Diffie-Hellman) a group (Z/pZ)∗. In the ElGamal system
a hash function plays a role; this is a function

H : M −→ Z>0.

Hash functions are often used in cryptography. For various practical
applications hash functions have been constructed, with fancy names
such as SHA-1 and SHA-2 and SHA-3 (SHA = Secure Hash Algorithm).
SHA-3 was released by NIST quite recently: August 5th, 2015, see
http://www.nist.gov/itl/csd/201508 sha3.cfm. A condition any
hash function needs to satisfy, is that no efficient way is known which,
on input some value H(m), outputs m̃ ∈M such that H(m̃) = H(m).
We will assume that the function H is public; given m ∈ M , anyone
can calculate the value H(m).

Next, a large prime p and a primitive root g ∈ (Z/pZ)∗ are chosen.
The person who wants to add a digital signature to the message m,
owns (or chooses) a secret key x: it is an integer satisfying 1 < x < p−1.
He/she now calculates y := gx. The triple

(p, g, y)

is called the public key (of this person). This public key, as the name
suggests, is made public.

A digital signature on the message m is now constructed as follows.

• Pick a random integer k such that k mod (p− 1) is a unit;
• Compute r with 1 ≤ r ≤ p− 1 such that r mod p = gk;
• Compute s with 0 ≤ s < p− 1 such that

s mod (p− 1) = ((H(m)− xr) mod (p− 1)) · (k mod (p− 1))−1.

http://www.nist.gov/itl/csd/201508_sha3.cfm

2. DH AND RSA AND ELGAMAL SIGNATURES 49

• If s = 0, take a different random k, until s 6= 0.

The ElGamal digital signature on m is the pair (r, s).

The only way in which in this recipe s = 0 can occur, is that r
satisfies xr ≡ H(m) mod (p − 1). Now x is fixed, and satisfies x 6≡
0 mod (p− 1). As a consequence, multiplication by x as a map Z/(p−
1)Z → Z/(p − 1)Z is not a constant map. In particular, H(m) mod
(p − 1) can not be the only element of the image of this map (it is
possible that it is not in the image at all!). This shows that a value r
exists such that the corresponding s 6= 0. Note that in the algorithm
constructing a digital signature, only integers r satisfying r mod p = gk

with gcd(k, p− 1) = 1, are considered. These are exactly all primitive
roots in (Z/pZ)∗:

Lemma 2.11. Let p be an odd prime and g ∈ (Z/pZ)∗ a primitive
root. For integers k one has

order(gk) = p− 1⇔ gcd(k, p− 1) = 1.

Consequently, there exist precisely ϕ(p− 1) primitive roots modulo p.

Proof. Put d := order(gk). Then (p− 1)|dk, so if gcd(k, p− 1) = 1
then it follows that (p−1)|d. By Lemma 2.1 d|(p−1), hence d = p−1.

In case gcd(k, p − 1) = e > 1, put k = ek1 and p − 1 = ee1. The
equality

(gk)e1 = gk1ee1 = (gp−1)k1 = 1

now shows that d = order(gk) ≤ e1 < p− 1.
Since gk only depends on k mod (p− 1), the above argument shows

that the primitive roots modulo p are in a one to one correspondence
with the k mod (p− 1) ∈ (Z/(p− 1)Z)∗. There exist ϕ(p− 1) of those.

�

We have that ϕ(p − 1) is large when p is a large prime, so the
condition that s 6= 0, is in general not a problem. For example, one
could put as an additional condition that the secret key x has to be a
unit modulo (p − 1). This additional condition implies that a unique
r mod (p−1) exists with xr ≡ H(m) mod (p−1). In case ϕ(p−1) > 1
(which holds for primes p > 7), the added condition guarantees we will
find an s 6= 0. In practice none of this is a serious problem.

If a receiver obtains a message m equipped with a digital signature
(r, s), he/she calculates H(m) and gH(m) (this is possible because g and
the Hash function H are public). The sender also made a public key
y; the receiver now computes

yr · (rs mod p)

and verifies that this equals gH(m).

50 2. SECURITY

Since the digital signature needs to satisfy

ks ≡ (H(m)− xr) mod (p− 1),

one has indeed

gH(m) = gksgxr = (rs mod p) · yr,
hence if the verification by the receiver did not result in equality, then
either the message or the signature had been tampered with.

The usefulness and security of this system rely on two assumptions:

(1) It is not easy to find the secret key of the sender. In other
words, given the public y = gx it is not easy to retrieve x.

(2) It is difficult to falsify a digital signature. i.e., even with y
and g being public, it is not easy to construct a pair (r, s)
(without using the secret key x) which will be regarded as a
valid signature on a message m̃. It may sound plausible that
this indeed holds, yet no formal argument is known why such
an efficient construction can not exist.

3. Prime numbers

The given applications in cryptography require that we have a suffi-
cient supply of large primes at our disposal. Here we discuss a practical
algorithm to find such primes: the Miller-Rabin test. It is based on
the fact that the equation

x2 − 1 = 0

has only two solutions in Z/pZ (for p an odd prime), namely x = 1 and
x = −1. A similar assertion was used in the proof of Theorem 2.2. A
short proof: let n mod p be a solution. Then p|(n2−1) = (n−1)(n+1).
Since p is prime, it follows that p|n − 1 or p|n + 1, in other words,
n ≡ ±1 mod p. (Alternative proof: by Lemma 2.1 (Z/pZ)∗ contains at
most, and hence exactly, 2 elements of order dividing 2.)

Let p be an odd prime and write, as when discussing the Tonelli-
Shanks algorithm, p − 1 = q2s with s > 0 and q odd. For an integer
a such that 1 ≤ a ≤ p − 1 we have that order(aq) divides 2s, so this
order equals 2i with 0 ≤ i ≤ s. If s = 0, then aq = 1. If s > 0, then
aq2

i−1
has order 2, hence aq2

i−1
= −1. In other words: the sequence

aq, aq2, . . . , aq2
s−1

contains the element −1.
This observation leads to a simple test: suppose we have an odd

integer n ∈ Z≥3 and we want to test whether it is prime. The Miller-
Rabin test attempts this as follows.

• Put n − 1 = q2s with q odd and s > 0. Repeat the following
steps a number of times:
• Randomly choose a 6= 0 in Z/nZ and compute b := aq.

3. PRIME NUMBERS 51

• If b = 1, try another a.
• If b 6= 1, compute the sequence

b, b2, . . . , b
2s−1

and check if it contains −1. If not, then n is composite and
the algorithm terminates. Otherwise, try another a.
• If the test is passed for sufficiently many a’s, then n is probably

prime.

In case this algorithm outputs that n is composite, then indeed it
is. Namely, it means that a 6= 0 in Z/nZ was found, with properties
different from any element in (Z/pZ)∗ for p prime, as we saw earlier.

If the algorithm outputs that n is probably prime, it means that
every a considered, satisfies either aq = 1 (in that case a is a unit

modulo n, namely one of order dividing q), or aq2
i

= −1 for an i with
0 ≤ i < s. In this case a is also a unit modulo n, now with even order.
In short, the conclusion is that all used a’s are in

A :=
{
a ∈ (Z/nZ)∗ | aq = 1 or ∃0 ≤ i < s : aq2

i

= −1
}
.

This set A satisfies:

Theorem 3.1. If the odd integer n > 1 is composite, then

#A

ϕ(n)
≤ 1

4
.

A proof of this is presented in a text by René Schoof:
http://www.mat.uniroma2.it/~schoof/05rene.pdf. It uses a result
we now prove using Theorem 2.2:

Lemma 3.2. Let p be an odd prime and e > 0. Then ϕ(pe) =
pe−1(p− 1), and (Z/peZ)∗ contains an element of order pe−1(p− 1).

Proof. By definition ϕ(pe) equals the number of integers n such
that 1 ≤ n ≤ pe and gcd(n, pe) = 1, which means p does not divide n.
So one finds pe minus the number of n ∈ {1, . . . , pe} that are multiples
of p. Hence ϕ(pe) = pe − pe−1 = pe−1(p− 1).

The application

a+ peZ 7→ a+ pZ
defines a map

f : (Z/peZ)∗ −→ (Z/pZ)∗

satisfying f(a · b) = f(a)f(b) for units a, b. This map is surjective, as
an arbitrary a+ pZ has preimage (e.g.) a+ peZ. Take a primitive root
g + pZ ∈ (Z/pZ)∗ and put g := g + peZ. Write d := order(g). Since
gd = 1, also gd mod p = f(gd) = f(1) = 1 mod p. Lemma 2.1 implies
that d is a multiple of the order of g mod p, which is p− 1. Therefore
d = (p− 1)d1 for some d1 ≥ 1.

http://www.mat.uniroma2.it/~schoof/05rene.pdf

52 2. SECURITY

Then the element h := gd1 has order p−1 in the group (Z/peZ)∗. If
we moreover find an element j ∈ (Z/peZ)∗ with order(j) = pe−1, then
part (3) of Lemma 2.1, observing that gcd(pe−1, p− 1) = 1, shows that
hj is the desired element of order ϕ(pe) is.

Claim: j := (1 + p) mod pe is in (Z/peZ)∗, and its order equals
pe−1.
Namely, from the binomial formula (and induction on e) one finds

(1+p)p
e−1 ≡ 1 mod pe. Therefore (1+p) mod pe is a unit, and its order

divides pe−1. Write this order as pi with i satisfying 0 ≤ i ≤ e − 1.
Then

pe|
(

(1 + p)p
i − 1

)
.

For contradiction, if i < e− 1, then also i+ 2 ≤ e, and therefore

(1 + p)p
i ≡ 1 mod pi+2.

However, again from the binomial formula and induction to i, one has

(1 + p)p
i ≡ (1 + pi+1) mod pi+2.

Combining the congruences yields pi+1 ≡ 0 mod pi+2, a contradiction!
So indeed j has order pe−1, completing the proof. �

4. A factorisation method: Pollard p− 1

Discussing RSA, we saw that a necessary condition for its security
is, that no efficient algorithm is known which, on input of a composite
integer n, outputs a divisor m|n with 1 < m < n. This leads to the
question, which algorithms have been found so far for this problem.
The most successful algorithms to date (2015) are the “number field
sieve” (two versions of it, the ‘special’ SNF, suited for special integers
such as 22m + 1 and many more, and the ‘general’ GNF, used for num-
bers with no specific additional form. A predecessor of the number
field sieve, the so-called quadratic sieve, factored several large numbers
as well. An other famous algorithm is the “elliptic curve method”,
ECM. Especially when close to a prime divisor p of n, many numbers
p+ a occur which have only small prime factors, then ECM, a method
proposed by Leiden mathematician H.W. Lenstra (we met him when
discussing AES), turns out to be very efficient.

In this section we describe an algorithm which provided an im-
portant motivation for ECM. It was proposed by the English mathe-
matician John Pollard, and it is called the p − 1 method. The most
important difference between Pollard p− 1 and ECM, is that the first
uses the group (Z/pZ)∗ for some prime p|n, whereas ECM instead uses
the so-called group of points over Z/pZ of an elliptic curve. We will
discuss elliptic curves in Section 5. The idea in Pollard p − 1 is as
follows.

4. A FACTORISATION METHOD: POLLARD p− 1 53

Suppose n > 1 is composite. If p is a prime divisor of n, then we
obtain a surjective map

π : (Z/nZ)∗ −→ (Z/pZ)∗

given as a = a + nZ 7→ a + pZ. The equality π(a · b) = π(a)π(b)
holds. If e is some divisor of p − 1, then a + pZ in (Z/pZ)∗ exists
satisfying ae mod p = 1 mod p, and therefore, for any multiple E of
e, also aE mod p = 1 mod p. Elements a mod p as discussed here,
are easy to describe: if g mod p is a primitive root modulo p, writing
p− 1 = de, then

gd mod p, g2d mod p, . . . , gd(e−1) mod p, 1 mod p

are the desired classes a mod p.
Randomly picking a unit a mod p, the probability that it is one of

the classes above, equals e/(p − 1) = 1/d. We can do the same for
other divisors e of p − 1. Then, provided p − 1 has many divisors,
the probability that aE mod p = 1 mod p, with E a common multiple
of several such e’s, is not too small. Of course we do not know the
prime divisor p, and hence neither the suitable e’s. What can be done
however, is guess a possible E. It should have many divisors in order
to increase the probability that aE ≡ 1 mod p, or equivalently, that p
divides aE − 1. A reasonable choice is to take

E := lcm(2, 3, 4, 5, . . . , B)

for a not too small bound B. In Magma this is implemented as follows:

E:=1; B:=100;

for j in [2..B] do

E:=LCM(E,j);

end for;

E;

Now randomly pick a (small) integer a, for example, a small prime.
We do not know the desired prime factor p of n (yet), and thus neither
do we know aE mod p. But we can compute aE mod n. Write aE mod
n = b mod n. Our hope is that aE mod p = 1 mod p, i.e., p|b − 1. If
this were true, then p divides n as well as b−1, so p|gcd(n, b−1). This
is precisely the way in which the Pollard p − 1 algorithm attempts to
find divisors of n. With E as above, it is implemented in Magma as
follows:

pollard := function(n)

R := quo<Integers()|n>;

a := 2;

for j in [1..100] do

a := NextPrime(a);

if (n mod a) eq 0 then

return a;

54 2. SECURITY

else

b := (R!a)^E;

g := GCD(n,b-1);

if not (g eq 1) and not (g eq n) then

return g;

end if;

end if;

end for;

return 0;

end function;

pollard(10511111111111);

pollard(2*3^40+1);

5. Elliptic curves

The abbreviation ECC in cryptography stands for “Elliptic Curve
Cryptography”: cryptography using elliptic curves. Much has been
written about this subject. A first and incomplete description is, that
the role of (Z/pZ)∗ in various protocols, may be replaced by the group
E(Z/pZ) of points with coordinates in the integers modulo p, on an
elliptic curve E.

Here we present a brief introduction to the theory of elliptic curves.
We closely follow a part of the slides made by the American mathe-
matician Joe Silverman in 2006 for a summer school in Wyoming on
the subject. In his text he writes, as is common in algebra, Fp for the
field Z/pZ. If q = pe is a power of a prime p, then more generally Fq

denotes a field consisting of precisely q elements. For example, when
discussing AES we encountered F256.

The complete text by Silverman can be found at
www.math.brown.edu/~jhs/Presentations/WyomingEllipticCurve.pdf; a small part
of this text is found below, with some additional explanation.

http://www.math.brown.edu/~jhs/Presentations/WyomingEllipticCurve.pdf

5. ELLIPTIC CURVES 55

An Introduction to the
Theory of Elliptic Curves

Joseph H. Silverman

Brown University and
NTRU Cryptosystems, Inc.

Summer School on
Computational Number Theory and

Applications to Cryptography
University of Wyoming

June 19 – July 7, 2006

0

Elliptic Curves

What is an Elliptic Curve?

• An elliptic curve is a curve that’s also naturally a
group.

• The group law is constructed geometrically.

• Elliptic curves have (almost) nothing to do with
ellipses, so put ellipses and conic sections out of
your thoughts.

• Elliptic curves appear in many diverse areas of math-
ematics, ranging from number theory to complex
analysis, and from cryptography to mathematical
physics.

An Introduction to the Theory of Elliptic Curves – 5–

56 2. SECURITY

Elliptic Curves

Points on Elliptic Curves

• Elliptic curves can have points with coordinates in
any field, such as Fp, Q, R, or C.

• Elliptic curves with points in Fp are finite groups.
• Elliptic Curve Discrete Logarithm Prob-

lem (ECDLP) is the discrete logarithm problem
for the group of points on an elliptic curve over a
finite field.

• The best known algorithm to solve the ECDLP is
exponential, which is why elliptic curve groups are
used for cryptography.

• More precisely, the best known way to solve ECDLP
for an elliptic curve over Fp takes time O

(√
p
)
.

• The goal of these talks is to tell you something
about the theory of elliptic curves, with an em-
phasis on those aspects that are of interest in cryp-
tography.

An Introduction to the Theory of Elliptic Curves – 6–

Elliptic Curves

The Equation of an Elliptic Curve

An Elliptic Curve is a curve given by an equation of
the form

y2 = x3 + Ax +B

There is also a requirement that the discriminant

∆ = 4A3 + 27B2 is nonzero.

Equivalently, the polynomial x3 +Ax +B has distinct
roots. This ensures that the curve is nonsingular.

For reasons to be explained later, we also toss in an
extra point, O, that is “at infinity,” so E is the set

E =
{
(x, y) : y2 = x3 + Ax +B

}
∪ {O}.

Amazing Fact: We can use geometry to make the
points of an elliptic curve into a group. The next few
slides illustrate how this is accomplished.

An Introduction to the Theory of Elliptic Curves – 7–

5. ELLIPTIC CURVES 57

Explanation: let s = (α, β) be a point on E, so β2 = α3 + Aα + B. A
line containing s can be given as

` = {s+ tr}
with r 6= (0, 0) a fixed direction and t a parameter. Write

F (x, y) = x3 + Ax+B − y2.
The intersection of ` and E corresponds to the values t such that F (s+
tr) = 0. The expression F (s+ tr) is a polynomial in the variable t, and
its degree is at most 3. Moreover, t = 0 is a zero of this polynomial,
since s ∈ E.

We call ` a tangent line to E in s, if the zero t = 0 of F (s + tr)
has multiplicity at least 2. Equivalently, if the polynomial F (s + tr)
is divisible by t2. Note that this definition of “tangent line” in the
case that we work over the real numbers, agrees with our intuition for
tangency. However, the definition does not only make sense over R: it
works equally well over an arbitrary field. To find such a tangent line,
the direction r = (γ, δ) should be chosen in such a way that t = 0 is a
double zero of F (s + tr). Since the coefficient of t in this polynomial
equals

γ
∂F

∂x
(s) + δ

∂F

∂y
(s) = γ(3α2 + A)− 2δβ,

we observe that in general, in a given point s = (α, β) of E one finds a
unique tangent line `, namely the line with as direction r an arbitrary
multiple of (2β, 3α2 + A).

A point s is called a singular point of the curve, if it is on the curve
and moreover there is more than one tangent line in s to the curve.
The above calculation shows that s = (α, β) is a singular point of E,
if it satisfies besides the equation of E also the system

{
2β = 0

3α2 + A = 0.

If 2 6= 0 holds in the field we consider, then a singular point on E is
necessarily of the form s = (α, 0), with α a zero of x3 + Ax + B of
multiplicity at least 2. In particular this implies

A = −3α2

and

B = −α3 − Aα = −α3 + 3α3 = 2α3.

Combining the two equalities above, we get 4A3 + 27B2 = 0. So if
4A3 + 27B2 6= 0, then the curve contains no singular points, i.e., in
every point on the curve one has a unique tangent line.

This tangent line assumption is used throughout Silverman’s slides.

58 2. SECURITY

The Geometry of Elliptic Curves

Adding Points on an Elliptic Curve

vP
vQ

E

Start with two points P and Q on E.

An Introduction to the Theory of Elliptic Curves – 9–

The Geometry of Elliptic Curves

Adding Points on an Elliptic Curve

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

vP
vQ

L

E

Draw the line L through P and Q.

An Introduction to the Theory of Elliptic Curves – 10–

5. ELLIPTIC CURVES 59

The Geometry of Elliptic Curves

Adding Points on an Elliptic Curve

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

vP
vQ

vR

L

E

The line L intersects the cubic curve E in a third
point. Call that third point R.

An Introduction to the Theory of Elliptic Curves – 11–

The Geometry of Elliptic Curves

Adding Points on an Elliptic Curve

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

vP
vQ

vR

v

L

E

Draw the vertical line through R.
It hits E in another point.

An Introduction to the Theory of Elliptic Curves – 12–

60 2. SECURITY

The Geometry of Elliptic Curves

Adding Points on an Elliptic Curve

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

vP
vQ

vR

v
P ⊕Q

L

E

We define the sum of P and Q on E to be the
reflected point. We denote it by P ⊕Q or just P +Q.

An Introduction to the Theory of Elliptic Curves – 13–

The Geometry of Elliptic Curves

Adding a Point To Itself on an Elliptic Curve

vP

E

How do we add a point P to itself, since there are
many different lines that go through P ?

An Introduction to the Theory of Elliptic Curves – 14–

5. ELLIPTIC CURVES 61

The Geometry of Elliptic Curves

Adding a Point To Itself on an Elliptic Curve

»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»

vP

HHHHY

L is tangent to E at P

L

E

If we think of adding P to Q and let Q approach P ,
then the line L becomes the tangent line to E at P .

An Introduction to the Theory of Elliptic Curves – 15–

The Geometry of Elliptic Curves

Adding a Point To Itself on an Elliptic Curve

»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»

vP

vR

v
2P

HHHHY

L is tangent to E at P

L

E

Then we take the third intersection point R, reflect
across the x-axis, and call the resulting point

P ⊕ P or 2P .

An Introduction to the Theory of Elliptic Curves – 16–

62 2. SECURITY

The Geometry of Elliptic Curves

Vertical Lines and the Extra Point “At Infinity”

E

P

Q = −P
v

v

Let P ∈ E. We denote the reflected point by −P .

An Introduction to the Theory of Elliptic Curves – 17–

The Geometry of Elliptic Curves

Vertical Lines and the Extra Point “At Infinity”

E

6

L

P

Q = −P
v

v

Vertical lines have

no third intersection

point with E

Big Problem: The vertical line L through P
and −P does not intersect E in a third point!
And we need a third point to define P ⊕ (−P).

An Introduction to the Theory of Elliptic Curves – 18–

5. ELLIPTIC CURVES 63

The Geometry of Elliptic Curves

Vertical Lines and the Extra Point “At Infinity”

E

6

L

O

P

Q = −P
v

v

Create an extra

point O on E

lying at “infinity”

Solution: Since there is no point in the plane that
works, we create an extra point O “at infinity.”

Rule: O is a point on every vertical line.

An Introduction to the Theory of Elliptic Curves – 19–

The Algebra of Elliptic Curves

Properties of “Addition” on E

Theorem The addition law on E has the following
properties:

(a) P +O = O + P = P for all P ∈ E.
(b) P + (−P) = O for all P ∈ E.
(c) P + (Q +R) = (P +Q) +R for all P,Q,R ∈ E.
(d) P +Q = Q + P for all P,Q ∈ E.

In other words, the addition law + makes the points
of E into a commutative group.

All of the group properties are trivial to check except
for the associative law (c). The associative law can be
verified by a lengthy computation using explicit formu-
las, or by using more advanced algebraic or analytic
methods.

An Introduction to the Theory of Elliptic Curves – 20–

64 2. SECURITY

Adding points on an elliptic curve can (for example) be done using
the Magma package. The example presented below considers the curve
with equation y2 = x3+2x+9 over the field of rational numbers Q. Two
points on this curve are P := (0, 3) and P2 := (4, 9). Combinations of
these points are found as follows.

Q:=Rationals();

E:=EllipticCurve([Q | 2, 9]);E;

P:=E![0,3];P2:=E![4,9];

2*P;

P-P2;

6*P+7*P2;

The geometrically described rules for adding points on an elliptic
curve will now be described with formulas.

The Algebra of Elliptic Curves

Formulas for Addition on E

Suppose that we want to add the points

P1 = (x1, y1) and P2 = (x2, y2)

on the elliptic curve

E : y2 = x3 + Ax +B.

Let the line connecting P to Q be

L : y = λx + ν

Explicitly, the slope and y-intercept of L are given by

λ =

y2 − y1
x2 − x1

if P1 6= P2

3x21 + A

2y1
if P1 = P2

and ν = y1 − λx1.

An Introduction to the Theory of Elliptic Curves – 22–

5. ELLIPTIC CURVES 65

The Algebra of Elliptic Curves

Formulas for Addition on E (continued)

We find the intersection of

E : y2 = x3 + Ax +B and L : y = λx + ν

by solving
(λx + ν)2 = x3 + Ax +B.

We already know that x1 and x2 are solutions, so we can
find the third solution x3 by comparing the two sides of

x3 + Ax +B − (λx + ν)2

= (x− x1)(x− x2)(x− x3)

= x3 − (x1 + x2 + x3)x
2 + (x1x2 + x1x3 + x2x3)x− x1x2x3.

Equating the coefficients of x2, for example, gives

−λ2 = −x1 − x2 − x3, and hence x3 = λ2 − x1 − x2.

Then we compute y3 using y3 = λx3 + ν, and finally

P1 + P2 = (x3,−y3).

An Introduction to the Theory of Elliptic Curves – 23–

The Algebra of Elliptic Curves

Formulas for Addition on E (Summary)

Addition algorithm for P1 = (x1, y1) and P2 = (x2, y2)
on the elliptic curve E : y2 = x3 + Ax +B

• If P1 6= P2 and x1 = x2, then P1 + P2 = O.

• If P1 = P2 and y1 = 0, then P1 + P2 = 2P1 = O.

• If P1 6= P2 (and x1 6= x2),

let λ =
y2 − y1
x2 − x1

and ν =
y1x2 − y2x1
x2 − x1

.

• If P1 = P2 (and y1 6= 0),

let λ =
3x21 + A

2y1
and ν =

−x3 + Ax + 2B

2y
.

Then

P1 + P2 = (λ2 − x1 − x2,−λ3 + λ(x1 + x2)− ν).

An Introduction to the Theory of Elliptic Curves – 25–

66 2. SECURITY

The Algebra of Elliptic Curves

An Observation About the Addition Formulas

The addition formulas look complicated, but for exam-
ple, if P1 = (x1, y1) and P2 = (x2, y2) are distinct
points, then

x(P1 + P2) =

(
y2 − y1
x2 − x1

)2

− x1 − x2,

and if P = (x, y) is any point, then

x(2P) =
x4 − 2Ax2 − 8Bx + A2

4(x3 + Ax +B)
.

Important Observation: If A and B
are in a field K and if P1 and P2 have
coordinates in K, then P1 + P2 and 2P1
also have coordinates in K.

An Introduction to the Theory of Elliptic Curves – 26–

The Algebra of Elliptic Curves

The Group of Points on E with Coordinates in a Field K

The elementary observation on the previous slide leads
to the important result that points with coordinates in a
particular field form a subgroup of the full set of points.

Theorem. (Poincaré, ≈ 1900) Let K be a field and
suppose that an elliptic curve E is given by an equation
of the form

E : y2 = x3 + Ax +B with A,B ∈ K.

Let E(K) denote the set of points of E with coordi-
nates in K,

E(K) =
{
(x, y) ∈ E : x, y ∈ K

}
∪ {O}.

Then E(K) is a subgroup of the group of all points
of E.

An Introduction to the Theory of Elliptic Curves – 27–

5. ELLIPTIC CURVES 67

With Magma it is easy to compute in a group E(Z/pZ) for p a
prime number:

p:=37;

Fp:=GF(p);

E:=EllipticCurve([Fp | -5,8]);

P:=E![6,3]; Q:=E![10,12];

Order(P);

Order(Q);

RationalPoints(E);

#E;

In the given example all 45 points in E(F37) turn out to be combinations
of P and Q.

The Algebra of Elliptic Curves

A Finite Field Example (continued)

Substituting in each possible value x = 0, 1, 2, . . . , 36
and checking if x3 − 5x + 8 is a square modulo 37, we
find thatE(F37) consists of the following 45 points mod-
ulo 37:

(1,±2), (5,±21), (6,±3), (8,±6), (9,±27), (10,±25),

(11,±27), (12,±23), (16,±19), (17,±27), (19,±1), (20,±8),

(21,±5), (22,±1), (26,±8), (28,±8), (30,±25), (31,±9),

(33,±1), (34,±25), (35,±26), (36,±7),O.

There are nine points of order dividing three, so as an
abstract group,

E(F37) ∼= C3 × C15.

Theorem. Working over a finite field, the group of
pointsE(Fp) is always either a cyclic group or the prod-
uct of two cyclic groups.

An Introduction to the Theory of Elliptic Curves – 29–

68 2. SECURITY

The Algebra of Elliptic Curves

Computing Large Multiples of a Point

To use the finite group E(Fp) for Diffie-Hellman, say,

we need p to be quite large (p > 2160) and we need to
compute multiples

mP = P + P + · · · + P︸ ︷︷ ︸
m times

∈ E(Fp)

for very large values of m.

We can compute mP in O(logm) steps by the usual
Double-and-Add Method. First write

m = m0 +m1 · 2 +m2 · 22 + · · · +mr · 2r
with m0, . . . ,mr ∈ {0, 1}.

Then mP can be computed as

mP = m0P +m1 · 2P +m2 · 22P + · · · +mr · 2rP,
where 2kP = 2 · 2 · · · 2P requires only k doublings.

An Introduction to the Theory of Elliptic Curves – 30–

The Algebra of Elliptic Curves

Computing Large Multiples of a Point (continued)

Thus on average, it takes approximately log2(m) dou-

blings and 1
2 log2(m) additions to compute mP .

There is a simple way to reduce the computation time
even further. Since it takes the same amount of time to
subtract two point as it does to add two points, we can
instead look at a “ternary expansion ofm, which means
writing

m = m0 +m1 · 2 +m2 · 22 + · · · +mr · 2r
with m0, . . . ,mr ∈ {−1, 0, 1}.

On average, this can be done with approximately 2
3 of

the mi’s equal to 0, which reduces the average number

of additions to 1
3 log2(m) .

An Introduction to the Theory of Elliptic Curves – 31–

5. ELLIPTIC CURVES 69

What Does E(K) Look Like?

What Does E(R) Look Like?

We have seen a picture of an E(R). It is also possible
for E(R) to have two connected components.

E

Analytically, E(R) is isomorphic to
the circle group S1 or to two copies
of the circle group S1 × C2.

An Introduction to the Theory of Elliptic Curves – 32–

What Does E(K) Look Like?

What Does E(Fp) Look Like?

The group E(Fp) is obviously a finite group. Indeed, it
clearly has no more than 2p + 1 points.

For each x ∈ Fp, there is a “50% chance” that the

value of f (x) = x3 + Ax + B is a square in F∗p. And

if f (x) = y2 is a square, then we (usually) get two points
(x,±y) in E(Fp). Plus there’s the point O.

Thus we might expect E(Fp) to contain approximately

#E(Fp) ≈ 1
2 · 2 · p + 1 = p + 1 points

A famous theorem of Hasse makes this precise:

Theorem. (Hasse, 1922) Let E be an elliptic curve

y2 = x3 + Ax +B with A,B ∈ Fp.
Then ∣∣#E(Fp)− (p + 1)

∣∣ ≤ 2
√
p.

An Introduction to the Theory of Elliptic Curves – 43–

70 2. SECURITY

Elliptic Curves Over Finite Fields

The Order of the Group E(Fp)
The Frobenius Map is the function

τp : E(F̄p) −→ E(F̄p), τp(x, y) = (xp, yp).

One can check that τp is a group homomorphism.

The quantity ap = p + 1−#E(Fp)

is called the Trace of Frobinius, because one way
to calculate it is to use the Frobenius map to get a
linear transformation on a certain vector space V`(E).
Then ap is the trace of that linear transformation.

Hasse’s Theorem says that

|ap| ≤ 2
√
p.

For cryptography, we need E(Fp) to contain a subgroup
of large prime order. How does #E(Fp) vary for dif-
ferent E?

An Introduction to the Theory of Elliptic Curves – 44–

Elliptic Curves Over Finite Fields

The Distribution of the Trace of Frobenius

There are approximately 2p different elliptic curves de-
fined over Fp.
If the ap(E) values for different E were uniformly dis-
tributed in the interval from −2

√
p to 2

√
p then we

would expect each value to appear approximately 1
2
√
p

times.

This is not quite true, but it is true that the values ap
between (say) −√

p and
√
p appear quite frequently.

The precise statement says that the ap values follow a
Sato-Tate distribution:

Theorem. (Birch)

#
{
E/Fp : α ≤ ap(E) ≤ β

}
≈ 1

π

∫ β

α

√
4p− t2 dt.

An Introduction to the Theory of Elliptic Curves – 45–

5. ELLIPTIC CURVES 71

Elliptic Curves Over Finite Fields

Computing the Order of E(Fp)
If p is small, we can compute x3 + Ax + B for each
p = 0, 1, . . . , p−1 and use quadratic reciprocity to check
if it is a square modulo p. This takes time O(p log p).

Schoof found a deterministic polynomial-time algorithm
that computes E(Fp) in time O(log p)6.

Elkies and Atkin made Schoof’s algorithm more efficient
(but probabilistic), so it is now called the

SEA Algorithm.

The details of SEA are somewhat complicated. Roughly,
one studies the set of all maps of a fixed degree ` from E
to other elliptic curves. These correspond to quotient
curves E/Φ for finite subgroups Φ ⊂ E of order `. One
deduces information about ap modulo `, from which ap
can be reconstructed.

An Introduction to the Theory of Elliptic Curves – 46–

The Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem
ECDLP

Let E be an elliptic curve defined over a finite field Fp.

E : y2 = x3 + Ax +B A,B ∈ Fp.
Let S and T be points in E(Fp). Find an integer m so
that

T = mS.

Recall that the (smallest) integer m with this property
is called the Discrete Logarithm (or Index) of T
with respect to S and is denoted:

m = logS(T) = indS(T).

Let n be the order of S in the group E(Fp). Then
logS : (Subgroup of E generated by S) −→ Z/nZ.

is a group isomorphism, the inverse of m 7→ mS.

An Introduction to the Theory of Elliptic Curves – 50–

72 2. SECURITY

The Elliptic Curve Discrete Logarithm Problem

How To Solve the ECDLP

Exhaustive Search Method

Computem1S,m2S,m3S, . . . for randomly chosen val-
ues m1,m2,m3 until you find a multiple with mS = T .
Expected running time is O(p), since #E(Fp) = O(p).

Collision Search Method

Compute two lists for randomly chosen values
m1,m2, . . .

List 1: m1S, m2S, m3S, . . .

List 2: T −m1S, T −m2S, T −m3S . . .

until finding a collision

miS = T −mjS.

Expected running time is O(
√
p) by the birthday para-

dox.
An Introduction to the Theory of Elliptic Curves – 51–

The Elliptic Curve Discrete Logarithm Problem

How To Solve the ECDLP

Pollard’s ρ Method

• The collision method has running timeO(
√
p), but

it takes about O(
√
p) space to store the two lists.

• Pollards ρ method for discrete logs achieves the
same O(

√
p) running time while only requiring a

very small amount of storage.
• The idea is to traverse a “random” path through

the multiples mS + nT until finding a collision.
This path will consist of a loop with a tail attached
(just like the letter ρ!!).

• It takes O(
√
p) steps to arrive on the loop part.

Then we can detect a collision in O(
√
p) steps by

storing only a small proportion of the visited points.
We choose which points to store using a criterion
that is independent of the underlying group law.

An Introduction to the Theory of Elliptic Curves – 52–

5. ELLIPTIC CURVES 73

The Elliptic Curve Discrete Logarithm Problem

How Else Can DLP Be Solved?

Pollard’s ρmethod works for most discrete log problems.

For an abstract finite group G whose group law is given
by a black box, one can prove that the fastest solution
to the DLP has running time O(

√
#G).

But for specific groups with known structure, there are
often faster algorithms.

• For Z/NZ, the DLP is inversion modulo N . It
takes O(logN) steps by the Euclidean algorithm.

• For R∗, the DLP can be solved using the standard
logarithm,

if β = αm, then m = log(β)/ log(α).

• For F∗p, there is a subexponential algorithm called
the Index Calculus that runs in (roughly)

O
(
ec

3√log p) steps.
An Introduction to the Theory of Elliptic Curves – 53–

The Elliptic Curve Discrete Logarithm Problem

Does ECDLP Have a Faster Solution?

The principal reason that elliptic curve groups are used
for cryptography is:

For general elliptic curves, the
fastest known method to solve
ECDLP is Pollard’s ρ Method!!

This means that it is not currently feasible to solve
ECDLP in E(Fq) if (say) q > 2160.

A DLP of equivalent difficulty in F∗q requires q ≈ 21000.

Similarly, ECDLP with q ≈ 2160 is approximately as
hard as factoring a 1000 bit number.

Hence cryptographic constructions based on ECDLP
have smaller keys, smaller message blocks, and may also
be faster.

An Introduction to the Theory of Elliptic Curves – 54–

74 2. SECURITY

The Elliptic Curve Discrete Logarithm Problem

Solving ECDLP in Special Cases

For “most” elliptic curves, the best known solution to
ECDLP has running time O(

√
p). But for certain spe-

cial classes of curves, there are faster methods.

It is important to know which curves have fast ECDLP
algorithms so that we can avoid using them.

Elliptic Curves E(Fp) With Exactly p Points

If #E(Fp) = p, then there is a “p-adic logarithm map”
that gives an easily computed homomorphism

logp-adic : E(Fp) −→ Z/pZ.

It is easy to solve the discrete logarithm problem in
Z/pZ, so if #E(Fp) = p, then we can solve ECDLP in
time O(log p).

An Introduction to the Theory of Elliptic Curves – 55–

5.1. The Edwards form for elliptic curves. In 2007 the Amer-
ican mathematician Harold M. Edwards proposed to use a different
equation instead of the equation for elliptic curves as given in the pre-
vious section. An advantage of this new form is, that under mild addi-
tional conditions the group law on the set of solutions to this equation,
is given by a single formula rather than a case-by-case consideration.
Immediately after Edwards’s proposal others picked it up, for example
Dan Bernstein (Chicago) and Tanja Lange (Eindhoven). Chapters 3–5
of the bachelor’s thesis of Marion Dam (2012) provide a detailed dis-
cussion of the idea by Edwards, and its relation to elliptic curves. We
briefly describe it here and refer to Dam’s text for proofs.

Suppose K is a field. The circle group over K, denoted C(K), is
defined as

C(K) :=
{

(x, y) ∈ K ×K ; x2 + y2 = 1
}
.

This set is made into a group as follows: let O := (1, 0) ∈ C(K). Given
two points Pj = (xj, yj) ∈ C(K), define

P1 + P2 := (x1x2 − y1y2, x1y2 + x2y1) .

It is not difficult to verify that this provides C(K) with the structure of
an abelian group, with unit element O and inversion −(x, y) = (x,−y).

https://fse.studenttheses.ub.rug.nl/10478/1/Marion_Dam_2012_WB_1.pdf

5. ELLIPTIC CURVES 75

In the special case K = R the points (x, y) in C(R) correspond to
the points x + yi on the unit circle in C. The usual multiplication in
this unit circle in this way yields the addition on C(R) as defined here.
This is the reason why in general C(K) is called the circle group (over
K).

If 1 + 1 6= 0 in K, i.e., if −1 6= 1 in K, then P := (0, 1) ∈ C(K)
satisfies P +P = (−1, 0) and P +P +P = (0,−1) and 4P = O. So in
this case C(K) contains a point of order 4, namely P .

The Edwards form can be regarded as a variation on the circle
group. Namely, let d ∈ K. Define Cd(K) as

Cd(K) :=
{

(x, y) ∈ K ×K ; x2 + y2 = 1 + dx2y2
}
.

For d = 0 this is the circle group. And for every d, the set
{(±1, 0), (0,±1)} is in Cd(K). We now try to make Cd(K) into a
group. Let Pj = (xj, yj) ∈ Cd(K). Put

P1 + P2 :=

(
x1x2 − y1y2

1 + dx1x2y1y2
,
x1y2 + x2y1

1− dx1x2y1y2

)
,

provided this is defined, i.e., the denominators are non-zero. A long
but straightforward computation shows that if P1 +P2 is defined, then
it is an element of Cd(K). Note that the special case d = 0 agrees with
the addition formula on the circle. In case d 6= 0 is not a square in
K, it can be shown that the denominators appearing above are non-
zero for all P1, P2 ∈ Cd(K). So in this case the addition is defined
on all of Cd(K). It turns out that this makes Cd(K) into an abelian
group. The inverse of a point P = (x, y) ∈ Cd(K) is −P := (x,−y).
Exactly as in the case of the circle group, P := (0, 1) ∈ Cd(K) satisfies
P + P = (−1, 0) and P + P + P = (0,−1) and 4P = O. So (recall we
assume −1 6= 1 in K) the point P has order 4 in Cd(K).

The bachelor’s thesis of Marion Dam explains the relation between
this Edwards form and elliptic curves. This starts from the observation
that one should look for elliptic curves containing a point (over K) of
order 4. Given such an elliptic curve E, Dam describes an explicit
bijection between E(K) and Cd(K) for some d ∈ K. This transports
the group structure on E to that on Cd. Vice versa, given d 6= 0, 6= 1,
she describes an elliptic curve E such that E(K) contains a point of
order 4, and a bijection Cd(K) → E(K) which is the inverse of the
one above. This explains how the group law formula on Cd can be
constructed, and why in fact it is a group law. Moreover, it shows
what kind of groups can be obtained as Cd(K): precisely all elliptic
curve groups containing a point of order 4.

We finish these lecture notes with some lines of Magma code, il-
lustrating the connection between the Edwards form and the standard
way of representing elliptic curves.

76 2. SECURITY

q:=RandomPrime(15);

Fq:=GF(q);

P2<x,y,z>:=ProjectiveSpace(Fq,2);

d:=Random(Fq);

Cd:=Curve(P2, z^2*(x^2+y^2)-z^4-d*x^2*y^2);

Pt:=Cd![1,0,1];

set:=Points(Cd);

a:=Cd![1,0,0]; b:=Cd![0,1,0];

E,f:=EllipticCurve(Cd,Pt);

P1:=Random(set); P2:=Random(set);

foo,fi:=IsInvertible(f);

fi(f(P1)+f(P2));

The following code first defines the Edwards curve Cd for a variable
d, and constructs an elliptic curve E, a ‘map’ f : Cd → E and an
‘inverse’ fi : E → Cd. Then two points P1 = (x1, y1) and P2 = (x2, y2)
on Cd are constructed, in which x1, x2 are two variables, and the yj are
taken in such a way that indeed P1, P2 ∈ Cd. Finally, P1 and P2 are
added by first sending them to E by means of the map f , then the
images are added using the group structure of E, and finally the sum
in E is sent back to Cd by means of the map fi.

The calculation, which takes quite some time since apparently
Magma has difficulty calculating the inverse of f , reveals that the for-
mula for adding points on Cd equals the one obtained as described here.

Qd<d>:=FunctionField(Rationals());

P2<x,y,z>:=ProjectiveSpace(Qd,2);

Cd:=Curve(P2, z^2*(x^2+y^2)-z^4-d*x^2*y^2);

Qdx1<x1>:=FunctionField(Qd);

R<Y>:=PolynomialRing(Qdx1);

K<y1>:=ext<Qdx1 | x1^2+Y^2-1-d*x1^2*Y^2>;

K2<x2>:=FunctionField(K);

S<T>:=PolynomialRing(K2);

L<y2>:=ext<K2 | x2^2+T^2-1-d*x2^2*T^2>;

Cd:=BaseChange(Cd, L);

Pt:=Cd![1,0,1];

E,f:=EllipticCurve(Cd,Pt);

P1:=Cd![x1,y1,1]; P2:=Cd![x2,y2,1];

foo,fi:=IsInvertible(f);

fi(f(P1)+f(P2));

6. EXERCISES ON SECURITY 77

6. Exercises on security

(1) In the AES, the S-Box uses a field consisting of 256 elements.
In the same spirit, construct fields consisting of 4 and also of
8 elements.

(2) Given the map λ used in the AES, find a formula for λ2 = λ◦λ
and show that λ4 equals the identity map.

(3) Given m = x8 + x4 + x3 + x + 1, compute the inverse of
x2 + 1 mod m in F2[x]/(m).

(4) Compute the S-box image σ(f) and the pre-image σ−1(f), for
f = x2 + 1 mod m.

(5) The integer n = 561 has the property that it is composite.
Yet, just as in Fermat’s little theorem for prime numbers,
it satisfies an−1 ≡ 1 mod n whenever a and n are coprime.
Prove that n = 561 indeed has the asserted properties.

(6) For each of the primes p < 20, find a primitive root modulo p.

(7) If p is prime and g is a primitive root modulo p, what is the
discrete logarithm of −1 mod p with respect to g?

(8) In this exercise we use that 2 is a primitive root modulo 29.
(a) Note that 25 ≡ 3 mod 29. What is the discrete log of

3 mod 29 w.r.t. 2?
(b) Now observe 2 · 3 · 5 ≡ 1 mod 29, and deduce from this

the discrete log of 5 mod 29 w.r.t. 2.
(c) Use 7 · 4 to find the discrete log of 7 mod 29 w.r.t. 2.
(d) Find the discrete log of 11 mod 29 w.r.t. 2, and also of

13 mod 29 = −16 mod 29.

(9) Using the previous exercise, find the prime numbers p < 29
such that p mod 29 is a square modulo 29.

(10) Given that 2 is a square modulo 31 and 3 is not, use the
Tonelli-Shanks algorithm to find a square root of 2 modulo
31.

(11) In the special cases n = 9, n = 15, and n = 21, compute
the cardinality of the set A mentioned in the discussion about
Miller-Rabin.

78 2. SECURITY

What is this set A in the case that n = p is an odd prime
number?

(12) Lemma 3.2 shows that for p an odd prime and e > 0, the
group (Z/peZ)∗ is cyclic, i.e., it consists of the powers of one
generator g mod pe.
(a) Show that if a group is cyclic, then it contains at most 1

element of order 2.
(b) Show that if e ≥ 3, then (Z/2eZ)∗ contains more than one

element of order 2, hence this group is not cyclic. And
what happens for e = 2 and for e = 1?

(13) Here are two ‘baby’-examples of a Pollard p− 1 factorisation.
(a) Take n = 1001 and E = 6. What is gcd(n, 2E − 1)?
(b) Now take n = 10001 and E = 12. Show that gcd(n, 2E −

1) = 1, and that gcd(n, 3E − 1) produces a nontrivial
factor of n.

(14) Let p be a prime satisfying p ≡ 3 mod 4. Take any a ∈ Fp

with a 6= 0. Consider E over Fp corresponding to the equation
y2 = x3 + ax.
(a) Verify that E defines an elliptic curve over Fp.
(b) Show that (−1)(p−1)/2 = −1 and conclude that −1 is not

a square modulo p.
(c) Write f(x) := x3 + ax. For b ∈ Fp, show that either

f(b) = 0, or exactly one of f(b), f(−b) is a nonzero square
in Fp.

(d) Conclude that E(Fp) is a group consisting of precisely
p+ 1 elements.

(e) Now take p = 67. How can you make sure that the group
considered here, is generated by one element?

(15) Given a point Q = (a, b) with a = 0 or b = 0 in an Edwards
group Cd(K), what is the formula describing ‘translation by
Q’ in Cd(K)?

(16) Suppose K is a field in which 1 + 1 6= 0, and d 6= 0 is an
element of K which is not a square. As claimed in the lecture
notes, these conditions ensure that the set Cd(K) with the
given addition formula is a group. Find all elements of order
2 in this group, and also all elements of order 4.

	Chapter 1. Binary codes
	1. Example: the Hamming code
	2. Definitions
	3. Dual codes
	4. Generator and parity-check matrices
	5. Generalised Hamming codes
	6. The MacWilliams identity
	7. Cyclic codes
	8. Exercises on binary linear codes

	Chapter 2. Security
	1. Advanced Encryption Standard
	2. DH and RSA and ElGamal signatures
	2.4. Discrete logarithms
	2.6. Extracting square roots modulo p
	2.7. Diffie-Hellman key exchange
	2.8. Solving discrete logarithms
	2.9. Rivest-Shamir-Adleman
	2.10. ElGamal digital signatures

	3. Prime numbers
	4. A factorisation method: Pollard p-1
	5. Elliptic curves
	5.1. The Edwards form for elliptic curves

	6. Exercises on security

