Security \& Codes

Jaap Top

Contents

Chapter 1. Binary codes 5

1. Example: the Hamming code 5
2. Definitions 7
3. Dual codes 11
4. Generator and parity-check matrices 13
5. Generalised Hamming codes 15
6. The MacWilliams identity 17
7. Cyclic codes 19
8. Exercises on binary linear codes 25
Chapter 2. Security 31
9. Advanced Encryption Standard 31
10. DH and RSA and ElGamal signatures 39
2.4. Discrete logarithms 42
2.6. Extracting square roots modulo p 43
2.7. Diffie-Hellman key exchange 45
2.8. Solving discrete logarithms 46
2.9. Rivest-Shamir-Adleman 46
2.10. ElGamal digital signatures 48
11. Prime numbers 50
12. A factorisation method: Pollard $p-1$ 52
13. Elliptic curves 54
5.1. The Edwards form for elliptic curves 74
14. Exercises on security 77

This text treats two topics. Firstly, binary codes are discussed. Such codes are used to store and transmit data. Assuming that the received encoded data contains not too many errors, one wants to reconstruct the original data. Coding theory is used in CD's and in DVD's, in communication satellites, and in essentially every situation where digital data is stored or transmitted.

The second topic to be treated, is how to secure data: can one encrypt a message in such a way that an adversary needs an immense amount of time and effort to retrieve the original message from the encrypted one?

Both topics will be treated in a rather algebraic fashion. However, we have tried to minimize prerequisites.

Groningen, August 2009 and August 2015. Jaap Top.

CHAPTER 1

Binary codes

Binary codes encode data as strings of zeros and ones. A well known example is the ASCII-code (American Standard Code for Information Interchange); encoding letters, numerals and punctuation marks as "words" consisting of 7 zeros and ones. A website such as
https://en.wikipedia.org/wiki/ASCII
contains details on this example. The symbols 0 and 1 used in binary codes are called 'bits'. There exist many codes that are not binary, i.e., codes involving not just zeros and ones but also other symbols. An example is the ISBN (International Standard Book Number), encoding every book as a string of 13 numerals ${ }^{1}$

We will restrict ourselves here to binary codes.

1. Example: the Hamming code

The Hamming code, invented by Richard Hamming (1915-1998), consists of 16 strings, each containing 7 symbols 0 or 1 . Write such a string as ($d_{1}, d_{2}, d_{3}, d_{4}, p_{1}, p_{2}, p_{3}$) and place the p_{i} 's and d_{j} 's as given in the three circles below,

then the rule is that each of the three circles should contain an even number of ones. The strings in the Hamming code are usually called words. As an example, 1111111 is in the Hamming code, because if we place all ones in the indicated regions of the three circles, then each circle turns out to contain 4 (hence an even number of) ones. Similarly,

[^0]1110110 is not in the Hamming code, as here the top circle contains 3 (so an odd number of) ones.

Every word in the Hamming code consists of precisely 7 bits; in other words: the Hamming code is a code of length 7 . The fact that the Hamming code contains precisely 16 words, is seen as follows. For $d_{1}, d_{2}, d_{3}, d_{4}$ one may choose 0 or 1 arbitrarily; this yields $2^{4}=16$ possibilities. Having chosen these four, p_{1} is fixed, since this bit makes sure that the top circle contains an even number of ones. Similarly p_{2} takes care of the parity of the number of ones in the leftmost circle, and p_{3} in the rightmost one. So indeed one obtains in total 16 words.

The d_{j} are called the data bits of a word in the Hamming code. The p_{i} are called parity bits. The Hamming code has several properties which will be discussed later in this chapter. Its most important feature however, is the possibility to detect and correct a single error in a received word. We now illustrate this in an example.

Example. Suppose that the received word is 1100101. Here the number of ones in the top circle is 3 , so this is not a correct correct code word. Considering all three circles, one finds that the number of ones in the rightmost circle is even while in the leftmost circle this is odd. Under the assumption that at most one bit is wrong, one concludes that the error is contained in the top circle and also in the leftmost circle. Moreover, the error cannot be in the rightmost circle. Conclusion: d_{1} is false, and the correct word is 0100101 .

Analogously to the above example, every word containing at most one erroneous bit can be corrected by considering which circles yield an odd number of ones. The erroneous bit is now contained in the intersection of those circles (and it is not in the remaining one(s)). What if the received word contains more than one error? In order to obtain a partial answer to this question, suppose we have a word in the Hamming code. For our word, by definition all three circles contain an even number of ones. Changing one bit of this word makes the number of ones odd in at least one of the circles. And subsequently changing another bit, there is still a circle with an odd number of ones. This shows that if a word contains precisely two errors, this will be detected. However, it is in general not possible to determine which two bits are wrong.

Example. The word 0000110 is not in the Hamming code. If one would know that this word contains two errors, then the corrected word could be 0000000 , but also 0110110 or 0001111 . In case three errors are made in a word of the Hamming code, then in general this can not even be detected. For example, 1111111 and 1101100 are both in the Hamming code.

So we see that the minimal number of places in which two distinct words of the Hamming code differ, equals 3. This is called the minimal distance of the code.

One can make many variations on the idea of the Hamming code by considering different configurations of circles, or replacing circles in the plane by balls in space (or even in higher dimensional spaces). In this way codes of larger length and with more words and also with a higher minimal distance may be constructed.

2. Definitions

The set $\{0,1\}$, equipped with an addition $0+0=1+1=0$ and $0+1=1+0=1$, and a multiplication $0 \cdot 0=0 \cdot 1=1 \cdot 0=0$ and $1 \cdot 1=1$, is denoted \mathbb{F}_{2}. This is just "arithmetic modulo 2"; instead of \mathbb{F}_{2} one also writes $\mathbb{Z} / 2 \mathbb{Z}$. Just as the real numbers \mathbb{R} and the complex numbers \mathbb{C} and the rational numbers $\mathbb{Q}, \mathbb{F}_{2}$ is a field. Websites such as
https://nl.wikipedia.org/wiki/Field_(mathematics)
(and many mathematical lecture notes and textbooks on abstract algebra) describe the general theory of fields.

In particular, every $a \in \mathbb{F}_{2}$ admits an additive inverse (which is some $b \in \mathbb{F}_{2}$ satisfying $a+b=0$), namely a itself. Moreover, if $a \neq 0$ then a admits a multiplicative inverse (this is some $c \in \mathbb{F}_{2}$ such that $a c=1$), namely again a itself.

Given any integer $n>0$ one writes \mathbb{F}_{2}^{n} for the set of all sequences/strings $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with all $a_{j} \in \mathbb{F}_{2}$. The integer n is called the length of the sequence. Two strings of the same length can be added coordinate wise, and any string can be multiplied coordinate wise by any element of \mathbb{F}_{2}. This makes \mathbb{F}_{2}^{n} into a vector space over the field \mathbb{F}_{2}. Vector spaces are treated in courses on linear algebra (usually with an emphasis on vector spaces over the field of real numbers or over the field of complex numbers); see

> https://nl.wikipedia.org/wiki/Vector_space

Definition 2.1. Let $n>0$ be an integer. A binary code C of length n is a nonempty subset of \mathbb{F}_{2}^{n}. The elements of C are called the words of the code.

If for all $v, w \in C$ also $v+w \in C$, then C is called a binary linear code.

So by definition, a binary linear code C is a linear subspace of \mathbb{F}_{2}^{n}. Indeed, the definition implies that C contains some element v. Linearity then implies that also $v+v$ is in C, and this equals the zero vector. It is now easy to verify that C is a vector space over the field \mathbb{F}_{2}.

Example. The Hamming code $H \subset \mathbb{F}_{2}^{7}$ is a binary linear code. To see this, we need to check that if $v, w \in H$, then also $v+w \in H$. Of course
one could try all possible v and w one by one and verify that indeed $v+w \in H$. A better method runs as follows.

By definition H consists of all sequences $\left(d_{1}, d_{2}, d_{3}, d_{4}, p_{1}, p_{2}, p_{3}\right)$ with the property that $\left(d_{1}, d_{2}, d_{4}, p_{1}\right)$ and $\left(d_{1}, d_{3}, d_{4}, p_{2}\right)$ and $\left(d_{2}, d_{3}, d_{4}, p_{3}\right)$ each contain an even number of coordinates equal to 1 . This means precisely that $d_{1}+d_{2}+d_{4}+p_{1}=0$ and $d_{1}+d_{3}+d_{4}+p_{2}=0$ and $d_{2}+d_{3}+d_{4}+p_{3}=0$ (addition in the field \mathbb{F}_{2} !). In other words: H consists of all words in \mathbb{F}_{2}^{7} which are mapped to the zero vector under the map $\varphi: \mathbb{F}_{2}^{7} \longrightarrow \mathbb{F}_{2}^{3}$ given by

$$
\left(d_{1}, d_{2}, d_{3}, d_{4}, p_{1}, p_{2}, p_{3}\right) \mapsto\left(d_{1}+d_{2}+d_{4}+p_{1}, d_{1}+d_{3}+d_{4}+p_{2}, d_{2}+d_{3}+d_{4}+p_{3}\right) .
$$

From the fact that φ is linear (this means, $\varphi(v+w)=\varphi(v)+\varphi(w)$ for all v, w) now follows that H (the kernel of φ) is a vector space.

Every vector space V has a basis, i.e., an ordered set of elements $\left\{v_{1}, \ldots, v_{k}\right\}$ in V which span V (this means, every vector in V can be written as a linear combination of vectors from that set), and moreover the set is linearly independent (meaning that every vector in the span of $\left\{v_{1}, \ldots, v_{k}\right\}$ has only one representation as a linear combination of vectors from the basis). From linear algebra it is known that every two bases of a linear space V contain the same number of elements. This number is called the dimension of V, notation: $\operatorname{dim}(V)$. If C is a binary code of length n, then $k:=\operatorname{dim}(C) \leq n$. Such C is called an $[n, k]$-code. (It is standard notation in coding theory to denote the length of a code by the letter n and the dimension of a code by the letter k.) If $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis for the $[n, k]$-code C, then every code word $v \in C$ can be written in a unique way as

$$
v=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{k} v_{k}
$$

for some $a_{j} \in \mathbb{F}_{2}$. Every linear combination of this shape is a codeword, so we see that an $[n, k]$-code consists of precisely 2^{k} words. Note that this shows once more, that every basis consists of k elements: the total number of elements in C equals 2 to the power the number of elements of a basis! Also, since $C \subset \mathbb{F}_{2}^{n}$, it follows that $2^{k} \leq 2^{n}$ and hence $k \leq n$, as we already knew from linear algebra.

In particular the number of code words in a binary linear code is necessarily a power of 2 .

Example. The Hamming code H is, as we saw, a binary linear code. H consists of 16 code words of length 7 , so apparently H is a [7, 4]-code. A basis for H is $\{1000110,0100101,0010011,0001111\}$, as is easily verified.

Definition 2.2. The Hamming distance $d(v, w)$ of two code words $v, w \in \mathbb{F}_{2}^{n}$ is the number of coordinates in which v and w differ.

The Hamming weight $|v|$ of a code word $v \in \mathbb{F}_{2}^{n}$ is the number of coordinates $\neq 0$ in v.

The minimal distance d of a code $C \subset \mathbb{F}_{2}^{n}$ is the minimal $d(v, w)$ where v and w run over all words in C (and $v \neq w$).

A Hamming ball of center $v \in \mathbb{F}_{2}^{n}$ and radius $r \leq n$ is a ball for the Hamming distance, that is

$$
\mathcal{B}(v, r)=\left\{w \in \mathbb{F}_{2}^{n} \mid d(v, w) \leq r\right\} .
$$

Just as the letters n and k are used for length and dimension, it is standard to use d for the minimal distance. The notation $[n, k, d]$-code therefore means: a linear code of length n, dimension k and minimal distance d. In particular, the Hamming code is a [7, 4, 3]-code.

Lemma 2.3. (Error detection) Let C be a code with minimal distance d. Then C detects (up to) $d-1$ errors.

Proof. Assume that we send a word u but the other party receives $v \neq u$. The error is detectable whenever $d(u, v)<d$. Because this contradicts with the minimal distance.

Lemma 2.4. (Error correction) Let C be a code of minimal distance d. Then C corrects (up to) $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors, where $\lfloor\cdot\rfloor$ is the floor function.

Proof. We will show that the balls $\mathcal{B}\left(v,\left\lfloor\frac{d-1}{2}\right\rfloor\right)$ are pairwise disjoint for all $v \in C$. This implies if $x \in \mathcal{B}\left(v,\left\lfloor\frac{d-1}{2}\right\rfloor\right)$ then $x=v$.

Let $v, v^{\prime} \in C$ be distinct words. Assume $x \in \mathcal{B}\left(v,\left\lfloor\frac{d-1}{2}\right\rfloor\right) \cap$ $\mathcal{B}\left(v^{\prime},\left\lfloor\frac{d-1}{2}\right\rfloor\right)$. Then

$$
d\left(v, v^{\prime}\right) \leq d(v, x)+d\left(x, v^{\prime}\right) \leq\left\lfloor\frac{d-1}{2}\right\rfloor+\left\lfloor\frac{d-1}{2}\right\rfloor \leq d-1 .
$$

This implies $v=v^{\prime}$ so we get a contradiction.
Definition 2.5. (Relative parameters) Given a code C of length n, dimension k and minimum distance d, the rate of C is defined as

$$
R:=\frac{k}{n} \in[0,1]
$$

and the relative distance as

$$
\delta:=\frac{d}{n} \in(0,1] .
$$

The rate quantifies the efficiency of the code. It is the ratio between information bits and sent bits. A rate close to 0 corresponds to a very redundant code which requires a huge amount of energy to transmit a short message. A rate close to 1 corresponds to an efficient code for which the ratio of pure information in the transmitted bit string is close to 1 . On the other hand, the relative distance quantifies the theoretical capability to correct errors. The closer δ to 1 , the larger number of errors one can theoretically correct. Our objective is that both the rate and the relative distance are close to 1 . But this is not possible since $d+k \leq n$ up to some exceptions. So a "good code" will be a
code satisfying a good trade off between these two relative parameters. The choice of codes will depend on the situation where they are used: for instance if the channel is very noisy, we will probably choose a code with a large minimum distance, even if its rate is low. On the other hand some devices require a limitation of energy consumption, and hence will encourage to use a code of high rate.

The definitions immediately imply that an $[n, k, d]$-code satisfies $0 \leq k \leq n$ and $1 \leq d \leq n$. We now consider some extreme cases.

If $n=k$, then the linear code C of length n contains 2^{n} words, hence $C=\mathbb{F}_{2}^{n}$. In this case $d=1$. An other extreme case happens when $k=0$, which means we have a linear code C of length n and dimension 0 . So C contains only the zero word, $000 \cdots 0$ (of length n). The minimal distance is undefined (or: equals ∞) in this case, because no two distinct words in the code exist.

Next, we consider extremal cases in the inequality $1 \leq d \leq n$. The case $d=1$ means that the code contains two words v, w differing in exactly one coordinate. If an error is made in (only) this coordinate, it is not detectable (hence not correctable). The final extreme case, $d=n$, means that $v, w \in C$ exist with v and w differing in all n coordinates. This implies $v+w=111 \cdots 1$. Linearity of C shows that this word consisting of ones only, is in the code as well. Now $d=n$ implies that every other word differs from this all ones word in all n coordinates. Conclusion: the code consists of precisely two words, namely $000 \cdots 0$ and $111 \cdots 1$. Hence $k=1$.

The following result indicates how special the above examples are.
Theorem 2.6. Given a binary $[n, k, d]$-code C. Then $k+d \leq n$, except in the following examples:
(a) $C=\{000 \cdots 0,111 \cdots 1\}$ is an $[n, 1, n]$-code.
(b) $C=\mathbb{F}_{2}^{n}$ is an $[n, n, 1]$-code.
(c) The code consisting of all words of length n having even Hamming weight, is an $[n, n-1,2]$-code.

Proof. The examples (a) and (b) were already discussed. What remains, is to show that an $[n, k, d]$-code C which does not satisfy $d+k \leq n$ and which is not one of the codes from (a) or (b), is necessarily a code as mentioned in (c), and it satisfies $k=n-1$ and $d=2$.

First, by assumption d is defined, so C contains at least two words and therefore $k>0$. Assume $k+d>n$ for some $[n, k, d]$-code C not given in (a) or (b). Consider $\pi: C \longrightarrow \mathbb{F}_{2}^{k}$ given by

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mapsto\left(a_{1}, a_{2}, \ldots, a_{k}\right) .
$$

Suppose $v, w \in C$ satisfy $\pi(v)=\pi(w)$. This means v and w may only differ in the last $n-k$ coordinates, so $d(v, w) \leq n-k$. Since d is the minimal distance in C and we assume $d>n-k$, it follows that $v=w$.

Conclusion: π is injective, and hence the image of C under π contains precisely 2^{k} elements. This means that π is bijective. In other words: for every $\left(a_{1}, \ldots, a_{k}\right)$ exactly one $v \in C$ exists with $\pi(v)=\left(a_{1}, \ldots, a_{k}\right)$.

Now choose $\left(a_{1}, \ldots, a_{k}\right)=(1,0, \ldots, 0)$. The $v \in C$ having this initial segment, has distance $\geq d>n-k$ to the zero word in C. Hence the remaining $n-k$ coordinates of v all need to be 1 .

We have $k \geq 2$, since $k=1$ would imply $1+d=k+d>n$ and therefore $d=n$. As was shown earlier, this would imply that C is given as in (a), which was excluded. Applying the argument above to $\left(b_{1}, \ldots, b_{k}\right)=(0, \ldots, 0,1)$ results in $w \in C$, and $v+w \in C$ has a 1 only in the first and in the k-th coordinate. So $d \leq 2$ and therefore $1 \leq n-k<d \leq 2$, hence $k=n-1$ and $d=2$.

Instead of projecting on the first k coordinates, we can repeat the reasoning and project on any k coordinates. In this way it is shown that all words containing exactly two ones, are in C. In particular, C contains the $n-1$ independent vectors $110000 \cdots, 011000 \cdots, 001100 \cdots, \ldots, 0 \cdots 011$. Every vector with an even Hamming weight can be expressed as a linear combination of the above vectors, hence is contained in C. Since precisely 2^{n-1} vectors of length n have even weight, this yields all of C, and indeed it is an $[n, n-1,2]$-code. This finishes the proof.

Definition 2.7. The bound $d \leq n-k+1$ is called the Singleton bound. A linear $[n, k, d]$ code over \mathbb{F}_{2} with $d=n-k+1$ is called an MDS code. Here, MDS stands for maximum distance separable.

3. Dual codes

In analogy with the standard inner product on \mathbb{R}^{n}, one assigns to two words $v, w \in \mathbb{F}_{2}^{n}$ an element of \mathbb{F}_{2}. Write $v=\left(a_{1}, \ldots, a_{n}\right)$ and $w=\left(b_{1}, \ldots, b_{n}\right)$, then by definition:

$$
v \cdot w:=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n} \in \mathbb{F}_{2} .
$$

Proposition 3.1. The dot product satisfies the following properties.
(1) Commutative. For all $v, w \in \mathbb{F}_{2}^{n}$ we have $u \cdot v=v \cdot w$.
(2) Bilinear. For all $u, v, w \in \mathbb{F}_{2}^{n}$ we have

$$
u \cdot(v+w)=u \cdot v+u \cdot w
$$

(3) We have $v \cdot w=0$ iff number of coordinates in which both u and v have one is even.
(4) For all even weight $v \in \mathbb{F}_{2}^{n}$ we have $v \cdot v=0$.
(5) If $v \in \mathbb{F}_{2}^{n}$ satisfies $v \cdot w=0$ for all $w \in \mathbb{F}_{2}^{n}$, then $v=0$.

Proof. We will prove (5) and the rest is left to the reader. Take i with $1 \leq i \leq n$. Since $v \cdot w=0$ for all w, this holds in particular for the word e_{i} consisting of a 1 on place i and 0 elsewhere. Now $0=v \cdot e_{i}$ equals the i-th coordinate of v, so $v=0$.

Definition 3.2. The dual C^{\perp} of a code $C \subset \mathbb{F}_{2}^{n}$ is

$$
C^{\perp}:=\left\{v \in \mathbb{F}_{2}^{n} \mid v \cdot c=0 \text { for all } c \in C\right\} .
$$

It is immediate from the definition that if C has length n, then C^{\perp} is a linear code, of the same length n.

Proposition 3.3. If C is an $[n, k]$-code, then C^{\perp} is an $[n, n-k]$ code.

Proof. Take a basis v_{1}, \ldots, v_{k} for C, and define the map

$$
\varphi: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{k}
$$

by $\varphi(v):=\left(v \cdot v_{1}, v \cdot v_{2}, \ldots, v \cdot v_{k}\right)$. This is a linear map. Its kernel, i.e., all v with $\varphi(v)=0$, consists of all v satisfying $v \cdot v_{1}=v \cdot v_{2}=\ldots=v \cdot v_{k}=0$. Every word in C^{\perp} has this property, and since all words in C can be written as a combination of the words v_{1} to v_{k}, vice versa every element of the kernel of φ is also contained in C^{\perp}. Conclusion: $\operatorname{Ker}(\varphi)=C^{\perp}$.

We will now use the famous result

$$
\operatorname{dim} \operatorname{Ker}(\varphi)+\operatorname{rank}(\varphi)=n
$$

from linear algebra. We first determine $\operatorname{rank}(\varphi)$. With respect to the standard bases for \mathbb{F}_{2}^{n} and $\mathbb{F}_{2}^{k}, \varphi$ is given by the matrix with as rows the words v_{1} to v_{k}. Indeed, the i-th standard basis vector e_{i} (with 1 on place i and zeros elsewhere) has $e_{i} \cdot v_{j}$ equal to the i-th coordinate of v_{j}. This shows that the i-th column of the requested matrix consists of the i-th coordinates of $v_{1}, v_{2}, \cdots, v_{k}$, respectively. By definition the rows of the matrix obtained here, are independent, so $\operatorname{rank}(\varphi)=k$.

It follows that $\operatorname{dim} C^{\perp}=\operatorname{dim} \operatorname{Ker}(\varphi)=n-k$.
In 'ordinary' linear algebra over $K=\mathbb{R}$ or $K=\mathbb{C}$ an analogous theorem holds: is V a finite dimensional vector space over K equipped with an inner product, and is W a subspace of V, then $\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} V$. Most linear algebra textbooks prove this by observing that $W \cap W^{\perp}=\{0\}$, and $W+W^{\perp}=V$. In our situation, both these assertions are in general false, hence the argument above necessarily runs differently.

Proposition 3.4. Given two linear codes $C, D \subset \mathbb{F}_{2}^{n}$.
(1) One has $C \subset D \Leftrightarrow C^{\perp} \supset D^{\perp}$.
(2) One has $C^{\perp \perp}=C$.

Proof. Assume $C \subset D$ and let $v \in D^{\perp}$. Since every $c \in C$ is also in D, one has $v \cdot c=0$, so $v \in C^{\perp}$. This shows $D^{\perp} \subset C^{\perp}$.

For $c \in C$ arbitrary, then $c \cdot v=0$ for every $v \in C^{\perp}$, hence $c \in C^{\perp \perp}$. This proves $C \subset C^{\perp \perp}$. The dimension of $C^{\perp \perp}$ equals $n-(n-\operatorname{dim}(C))=$ $\operatorname{dim}(C)$, so indeed $C=C^{\perp \perp}$.

Finally, suppose $C^{\perp} \supset D^{\perp}$. The arguments above show that in this case

$$
C=C^{\perp \perp} \subset D^{\perp \perp}=D
$$

This completes the proof.
We close this section with an application of 'duals' which, strictly speaking, does not belong to coding theory. The theorem below plays a role in the computer game FlipIt; see for example
http://www.math.rug.nl/~top/FlipIt.pdf

4. Generator and parity-check matrices

Definition 4.1. (Generator matrix) Let C be an $[n, k, d]$-code. A generator matrix G is a matrix in $M_{k \times n}\left(\mathbb{F}_{2}\right)$ whose rows form a basis for C. That is

$$
C=\left\{v \cdot G \mid v \in \mathbb{F}_{2}^{k}\right\}
$$

We say that G is in the standard form if $G=\left[I_{k} \mid X\right]$. We also say that G is a systematic generator matrix of C.

Definition 4.2. (Parity-check matrix) Let C be an $[n, k, d]$-code. A parity-check matrix $H \in M_{n-k \times n}$ for C is a generator matrix for the dual code C^{\perp}. That is

$$
C^{\perp}=\left\{v \cdot H \mid v \in \mathbb{F}_{2}^{n-k}\right\} .
$$

We say that H is in the standard form if $H=\left[Y \mid I_{n-k}\right]$.
Proposition 4.3. Let H be a parity-check matrix for an $[n, k]$ code C. Then, for $v \in \mathbb{F}_{2}^{n}$, we have

$$
v \in C \Longleftrightarrow v H^{\top}=0 \Longleftrightarrow H v^{\top}=0 .
$$

Proof. Since $\left(v H^{\top}\right)^{\top}=H^{\top^{\top}} v^{\top}=H v^{\top}$, the last equivalence follows. Let u_{i} be the i-th row of H. If $v \in C$, then $v \cdot u_{i}=0$ for all $1 \leq i \leq n$. Therefore, we have $v H^{\top}=0$. Conversely, $v H^{\top}=0$ implies that $v \cdot u_{i}=0$ for all $1 \leq i \leq n$ and hence $v \cdot c=0$ for all $c \in C^{\perp}$.

Corollary 4.4. A given $k \times n$ matrix G is a generator matrix for an $[n, k]$-code C if and only if the rows of G are linearly independent and $H G^{\top}=0$, where H is a parity-check matrix for C.

Equivalent statements for Proposition 4.3 and Corollary 4.4 are as follows:

Proposition 4.5. Let G be a generator matrix for an $[n, k]$-code C. Then, for $v \in \mathbb{F}_{2}^{n}$, we have

$$
v \in C^{\perp} \Longleftrightarrow v G^{\top}=0 \Longleftrightarrow G v^{\top}=0
$$

A given $(n-k) \times n$ matrix H is a parity-check matrix for an $[n, k]$-code C if and only if the rows of H are linearly independent and $H G^{\top}=0$, where G is a generator matrix for C.

Proposition 4.6. Let G be a generator matrix for an $[n, k]$-code in the standard form $\left[I_{k} \mid X\right]$. Then the parity check matrix of G is $\left[X^{\top} \mid I_{n-k}\right]$.

Proof. Follows from Proposition 4.5 since $\left[I_{k} \mid X\right]\left[X^{\top} \mid I_{n-k}\right]^{\top}=$ $X+X=0$.

Two $[n, k]$-codes are equivalent if a generator matrix of one can be obtained from a generator matrix of the other by a sequence of the following operations:
(i) permutation of the rows
(ii) addition of one row to another
(iii) permutation of the columns.

Theorem 4.7. Every $[n, k]$-code C is permutation equivalent to an $[n, k]$-code C^{\prime} with a generator matrix in the standard form.

Proof. Applying row operations to a generator matrix G gives another generator matrix for C. So if G^{\prime} is the reduced row echelon matrix of G, then by permuting the columns of G^{\prime}, we obtain a matrix in the form $\left[I_{k} \mid X\right]$.

One can "read" the minimum distance by studying the linear relations between the column vectors of a parity-check matrix.

Proposition 4.8. Let C be a code with parity-check matrix H. Every set of s columns of H is linearly independent if and only if the minimal distance is strictly greater than s.

Proof. (\Rightarrow :) Let $H_{1}, H_{2}, \ldots, H_{n}$ be the columns of H. Assume that every subset of $\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ of size s is linearly independent. Let $c=\left(c_{1}, \ldots, c_{n}\right)$ be a non-zero codeword in C. Then we have

$$
0=H \cdot c^{\top}=\sum_{i=1}^{n} c_{i} H_{i}=\sum_{c_{i} \neq 0} c_{i} H_{i} .
$$

Claim. $d>s$:
Since every subset of $\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ of size s is linearly independent, if $|c| \leq s$, then the coefficients in the sum $\sum_{c_{i} \neq 0} c_{i} H_{i}=0$ must all be zero. This implies $c=(0, \ldots, 0)$. So we have $|c|>s$ for all $c \in C$. Hence $d>s$.
$(\Leftarrow:)$ Suppose that the minimal distance is strictly greater than s. Assume that a subset of $\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ of size $t \leq s$ is linearly dependent. Without loss of generality, say H_{1}, \ldots, H_{t} are linearly dependent. Then there exists $c_{i} \in \mathbf{F}_{2}$ (not all zero) such that

$$
c_{1} H_{1}+\cdots c_{t} H_{t}=0
$$

This implies that $c=\left(c_{1}, \ldots, c_{t}, 0, \ldots, 0\right) \in C$ since $H \cdot c^{\top}=c_{1} H_{1}+$ $\cdots c_{t} H_{t}=0$. However this implies that the minimal distance is at most t hence at most s. This contradicts with the assumption. So we proved that every set of $t \leq s$ columns of H is linearly independent. In particular, every set of s columns is linearly independent.

Two immediate consequences of the proposition are
(i) If H has no zero column, then $d>1$.
(ii) If the column vectors of H are pairwise linearly independent, then $d>2$.

Corollary 4.9. Let C be an $[n, k, d]$-code. Let H be a paritycheck matrix of C. Then the minimal distance is s if and only if
(i) every set of $s-1$ columns of H is linearly independent and
(ii) at least one set of s columns of H is linearly dependent.

Example.

Let H be a [7, 4, 3]-Hamming code. The the matrix
is a parity-check matrix for H.
Now observe that the 7 columns here form exactly all words $\neq 0$ in \mathbb{F}_{2}^{3}. This property is generalized in Definition 5.1. In $\S 5$ we will see that for every $m \geq 2$, the minimal distance in $H(m)$ equals 3 . So these codes have a fairly high information density k / n, and they can correct any received word containing precisely one error.

5. Generalised Hamming codes

In this section we will apply the MacWilliams identity to the generalised Hamming codes $H(m)$.

Definition 5.1. The generalised Hamming code $H(m)$ with $m \geq 2$ is defined as a linear code of length $2^{m}-1$ with the parity-check matrix H whose columns consist of all nonzero vectors in \mathbb{F}_{2}^{m}.

Proposition 5.2. The generalised Hamming code $H(m)$ is a $\left[2^{m}-\right.$ $\left.1,2^{m}-1-m, 3\right]$-code.

Proof. By definition the columns are vectors in \mathbb{F}_{2}^{m}, i.e., the columns are of length m, the matrix H is an $m \times\left(2^{m}-1\right)$ matrix. It follows that $H(m)$ is a $\left[2^{m}-1,2^{m}-1-m\right]$-code.

By definition of a generalized Hamming code, any two vectors are linearly independent and at least one set of three vectors is linearly dependent. Hence by Corollary 4.9 we have $d=3$.

Proposition 5.3. For $m \geq 2$ all non-zero words in $H(m)^{\perp}$ have the same weight 2^{m-1}. In particular $H(m)^{\perp}$ is a $\left[2^{m}-1, m, 2^{m-1}\right]$-code.

Proof. By Proposition 3.3, the dual $H(m)^{\perp}$ is a $\left[2^{m}-1, m\right]$-code. We will show that the minimal distance is 2^{m-1}.

Recall that a parity check matrix H of $H(m)$ is a generator matrix of $H(m)^{\perp}$. Let H_{1}, \ldots, H_{m} denote the rows of the parity check matrix H of $H(m)$. Then

$$
H(m)^{\perp}=\left\{\sum_{i=1}^{m} c_{i} H_{i}: c_{i} \in \mathbb{F}_{2}\right\}
$$

Let $w=\left(w_{1}, \ldots, w_{2^{m}-1}\right) \in H(m)^{\perp}$ be an arbitrary non-zero codeword. Let $c_{i} \in \mathbb{F}_{2}$ be such that $w=\sum c_{i} H_{i}$. Take any column a_{i} of H where $1 \leq i \leq 2^{m}-1$, say $H=\left[a_{1} \cdots a_{m}\right]^{\top}$. Then the i th coordinate of w is $a_{1} c_{1}+\cdots+a_{m} c_{m}$.
Claim. $|w|=2^{m-1}$.
Proof of the claim. Define the linear map

$$
\begin{aligned}
\varphi_{w}: \mathbb{F}_{2}^{m} & \rightarrow \mathbb{F}_{2} \\
\left(a_{1}, \ldots, a_{m}\right) & \mapsto a_{1} c_{1}+\cdots+a_{m} c_{m}
\end{aligned}
$$

where c_{i} are as defined above. The cardinality of the preimage of 1 gives the weight of w since $w=\sum c_{i} H_{i}$.

This linear map is surjective since $\varphi_{w}((0, \ldots 0))=0$ and since at least one c_{i} is non-zero so we have $\varphi_{w}((0, \ldots, 1, \ldots, 0))=1$. By the Rank-Nullity theorem we have $\operatorname{dim}\left(\operatorname{ker} \varphi_{w}\right)=m-\operatorname{dim}\left(\operatorname{im} \varphi_{w}\right)=m-1$. This implies that the number of elements in \mathbb{F}_{2}^{m} mapping to 0 is 2^{m-1}. Hence number of elements mapping to 1 is also 2^{m-1}. This implies $|w|=2^{m-1}$.

So we proved that every codeword in $H(m)^{\perp}$ has weight 2^{m-1} hence $d=2^{m-1}$.

The code $H(m)^{\perp}$ thus has the property: any two words $\neq 0$ in the code have the same weight. If these two words differ, then their sum has this same weight as well. In the literature a code with these properties is called a simplex code (of length $2^{m}-1$).

6. The MacWilliams identity

In this section we prove a relation between the weights appearing in a linear code C and the weights appearing in the dual of C. Let C be an arbitrary code of length n.

Definition 6.1. The enumerator of C is the polynomial

$$
W_{C}(x, y):=\sum_{j=0}^{n} \#\{c \in C| | c \mid=j\} x^{j} y^{n-j}=\sum_{c \in C} x^{|c|} y^{n-|c|} \in \mathbb{Z}[x, y]
$$

As an example, the Hamming code H has as enumerator polynomial $W_{H}(x, y)=y^{7}+7 x^{3} y^{4}+7 x^{4} y^{3}+x^{7}$, since this code contains 1 word of weight 0 , there are 7 words of weight 3 and also of weight 4 , and finally 1 word of weight 7 .

Note that $W_{C}(1,1)$ equals the number of words in the code C. Hence the dimension k of a linear code C can be read off from the enumerator W_{C} of C. Furthermore, the total degree of W_{C} equals the length n of the code, so also the length can be read off from W_{C}.

Finally, if C is a linear code, then the minimal distance d of C may be found using W_{C} as well: it equals to the smallest positive degree of x in $W_{C}(x, y)$, in other words, it equals to the multiplicity of the solution $x=0$ in the equation $W_{C}(x, 1)=1$ (check this for yourself!).

The MacWilliams identity/theorem is the following.
Theorem 6.2. Let $C \subset \mathbb{F}_{2}^{n}$ be a linear $[n, k]$-code. Then we have $W_{C^{\perp}}(x, y)=2^{-k} W_{C}(y-x, y+x)$.

To show this, we begin by defining for $a \in \mathbb{F}_{2}$ the integer $(-1)^{a}$ as -1 in case $a=1$, and as +1 when $a=0$. Then $(-1)^{a+b}=(-1)^{a}(-1)^{b}$. Since our dot product $v \cdot w \in \mathbb{F}_{2}$, also $(-1)^{v \cdot w}$ is defined.

Lemma 6.3. Let $C \subset \mathbb{F}_{2}^{n}$ be an $[n, k]$-code and take $v \in \mathbb{F}_{2}^{n}$. Then

$$
\sum_{c \in C}(-1)^{c \cdot v}=\left\{\begin{array}{cc}
2^{k} & \text { if } v \in C^{\perp} \\
0 & \text { otherwise }
\end{array}\right.
$$

Proof. If $v \in C^{\perp}$, then $c \cdot v=0$ for all $c \in C$, so in this case each $c \in C$ yields a contribution 1 to the sum. The total then equals $\# C=2^{k}$.

If $v \notin C^{\perp}$, choose $c^{\prime} \in C$ with $c^{\prime} \cdot v=1$. Note that $C=c^{\prime}+C$, hence

$$
\sum_{c \in C}(-1)^{c \cdot v}=\sum_{c \in C}(-1)^{\left(c^{\prime}+c\right) \cdot v}=-\sum_{c \in C}(-1)^{c \cdot v}
$$

which implies that this sum equals 0 .
The definition of the enumerator involves terms $x^{|c|} y^{n-|c|}$ (for a code word c). Assigning such terms to a code word defines a map from \mathbb{F}_{2}^{n} to $\mathbb{Z}[x, y]$, the polynomials in the variables x and y with integer coefficients. These kinds of maps will now be considered more generally.

Definition 6.4. If $\varphi: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}[x, y]$ an arbitrary map, then a new map denoted $\hat{\varphi}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}[x, y]$ is defined as

$$
\hat{\varphi}(v):=\sum_{w \in \mathbb{F}_{2}^{n}}(-1)^{v \cdot w} \varphi(w) .
$$

Lemma 6.5. If $C \subset \mathbb{F}_{2}^{n}$ is an $[n, k]$-code and $\varphi: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}[x, y]$ is arbitrary, then

$$
\sum_{v \in C} \hat{\varphi}(v)=2^{k} \sum_{w \in C^{\perp}} \varphi(w) .
$$

Proof. By definition $\sum_{v \in C} \hat{\varphi}(v)=\sum_{v \in C} \sum_{w \in \mathbb{F}_{2}^{n}}(-1)^{v \cdot w} \varphi(w)$.
Interchanging the order of summation in the latter sum, and applying Lemma 6.3, it follows immediately that the sum equals $2^{k} \sum_{w \in C^{\perp}} \varphi(w)$, which is what we wanted to prove.

The MacWilliams identity will follow by applying the above lemma to the map φ, given by $\varphi(v):=x^{|v|} y^{n-|v|}$. In this case, by definition $\hat{\varphi}(v)=\sum_{w \in \mathbb{F}_{2}^{n}}(-1)^{v \cdot w} x^{|w|} y^{n-|w|}$.

One now expands the latter sum, writing $m:=|v|$. For any $w \in \mathbb{F}_{2}^{n}$, denote by j the number of places where both w and v have coordinate 1. Then $0 \leq j \leq m$, and $(-1)^{v \cdot w}=(-1)^{j}$.

Vice versa, given an integer j such that $0 \leq j \leq m$ and an $i \geq 0$ with $i+j \leq n$, there are exactly $\binom{m}{j}\binom{n-m}{i}$ words w with $|w|=i+j$ and the property that precisely j places exist on which both v and w have a 1 . This implies the formula

$$
\hat{\varphi}(v)=\sum_{j=0}^{m} \sum_{i=0}^{n-j}(-1)^{j}\binom{m}{j}\binom{n-m}{i} x^{i+j} y^{n-i-j} .
$$

Here the double sum can be factored as

$$
\left(\sum_{j=0}^{m}\binom{m}{j}(-x)^{j} y^{m-j}\right)\left(\sum_{i=0}^{n-m}\binom{n-m}{i} x^{i} y^{n-m-i}\right)
$$

which equals $(y-x)^{m}(y+x)^{n-m}$. Summarizing:

$$
\hat{\varphi}(v)=(y-x)^{|v|}(y+x)^{n-|v|} .
$$

Combining this formula with Lemma 6.5 one finds

$$
\begin{aligned}
W_{C}(y-x, y+x) & =\sum_{v \in C}(y-x)^{|v|}(y+x)^{n-|v|} \\
& =\sum_{v \in C} \hat{\varphi}(v)=2^{k} \sum_{w \in C^{\perp}} \varphi(w)=2^{k} W_{C^{\perp}}(x, y) .
\end{aligned}
$$

This proves the MacWilliams identity.
Example. Proposition 5.3 implies that the enumerator of $H(m)^{\perp}$ is given by $y^{2^{m}-1}+\left(2^{m}-1\right) x^{2^{m-1}} y^{2^{m-1}-1}$. The MacWilliams identity then yields a formula for the enumerator of $H(m)$. Check yourself, by computing the coefficient of $x^{3} y^{2^{m}-4}$, that $H(m)$ has exactly
$\left(2^{m}-1\right)\left(2^{m}-2\right) / 6$ words of weight 3 . To see this without using the MacWilliams identity: this number of words equals the number of subsets $\{u, v, w\} \subset \mathbb{F}_{2}^{m}$ having the properties $0 \notin\{u, v, w\}, \#\{u, v, w\}=3$ and $u+v+w=0$. Any such triple is obtained by first choosing $u \neq 0$ (there are $2^{m}-1$ possibilities for this), then choosing v such that $0 \neq v \neq u$. There are $2^{m}-2$ possibilities for this v. As third vector one now has to take $w=u+v$. This gives all ordered triples (u, v, w) with indeed the three vectors pairwise distinct and non-zero. Each of the 6 permutations of such a triple yields the same set $\{u, v, w\}$. It follows that indeed the number of such sets equals $\left(2^{m}-1\right)\left(2^{m}-2\right) / 6$.

7. Cyclic codes

One of the advantages of a linear code $C \subset \mathbb{F}_{2}^{n}$ over a general subset $D \subset \mathbb{F}_{2}^{n}$ is that testing whether a given $v \in \mathbb{F}_{2}^{n}$ satisfies $v \in C$ is easier than checking whether $v \in D$. Indeed, take a basis v_{1}, \ldots, v_{t} for C^{\perp}. Then $v \in C \Leftrightarrow v \cdot v_{j}=0$ for $1 \leq j \leq t$. Without further properties of D, verifying whether $v \in D$ requires trying all words in D (obviously one should sort the elements of D in some way to make this search more efficient, but still it will be slower than testing $v \in C$).

In this section we study linear codes with an additional property: they are 'cyclic'. We will see that for such codes, testing whether a given word is in the code is even simpler. And this is by far not the only advantage of cyclic codes.

Definition 7.1. A cyclic linear code of length n is a linear code $C \subset \mathbb{F}_{2}^{n}$ having the property: for every word $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in C$, also $\left(a_{n-1}, a_{0}, a_{1}, \ldots, a_{n-2}\right) \in C$.

In other words: C is cyclic, precisely when C is closed under cyclically shifting coordinates. Note that we could study nonlinear cyclic codes as well, but this will not be done here. We denote the 'shift' on \mathbb{F}_{2}^{n} by σ, so

$$
\sigma: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n} \quad\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \mapsto\left(a_{n-1}, a_{0}, a_{1}, \ldots, a_{n-2}\right) .
$$

Some properties of σ are presented in the next lemma.
Lemma 7.2. (1) For all $v \in \mathbb{F}_{2}^{n}$ one has $|\sigma(v)|=|v|$.
(2) For all $v, w \in \mathbb{F}_{2}^{n}$ one has $d(v, w)=d(\sigma(v), \sigma(w))$.
(3) The map $\sigma: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is linear and invertible.
(4) For all $v, w \in \mathbb{F}_{2}^{n}$ one has $v \cdot w=\sigma(v) \cdot \sigma(w)$.
(5) A linear code $C \subset \mathbb{F}_{2}^{n}$ is cyclic $\Leftrightarrow C=\sigma(C)$.

The properties are immediate consequences of the definitions; verify this yourself.

Corollary 7.3. If C is cyclic linear, then so is C^{\perp}.

Proof. We already saw that C^{\perp} is linear, so it remains to verify that if $v \in C^{\perp}$, then also $\sigma(v) \in C^{\perp}$. For this, consider an arbitrary $c \in C$. Write $c=\sigma\left(c^{\prime}\right)$ for some c^{\prime}; since C is cyclic, one has $c^{\prime} \in C$. The property $v \in C^{\perp}$ implies $v \cdot c^{\prime}=0$, and therefore $\sigma(v) \cdot c=$ $\sigma(v) \cdot \sigma\left(c^{\prime}\right)=v \cdot c^{\prime}=0$. Hence indeed $\sigma(v) \in C^{\perp}$, which is what we wanted to prove.

Example. The Hamming code H, as presented in the previous section, is not cyclic. For example $1000110 \in H$, but $0100011 \notin H$. However, a very small adjustment changes H into a cyclic code: consider H^{\prime} consisting of all strings $\left(d_{1}, d_{2}, d_{4}, d_{3}, p_{2}, p_{1}, p_{3}\right)$ with d_{i} and p_{j} satisfying the same properties also used to define H. Then H^{\prime} and H are 'equivalent': in some sense they have the same code words, except that the coordinates have been permuted. Now check yourself that indeed H^{\prime} is cyclic.

Our aim is to describe all cyclic linear codes, of every possible length. To this end, denote

$$
R_{n}:=\mathbb{F}_{2}[x] /\left(x^{n}+1\right) .
$$

This means: R_{n} consists of the polynomials in the variable x, having coefficients in \mathbb{F}_{2}, and with these polynomials we do arithmetic modulo $\left(x^{n}+1\right)$. Equivalently: two polynomials $f, g \in \mathbb{F}_{2}[x]$ are considered equal in R_{n}, notation $f \equiv g \bmod \left(x^{n}+1\right)$, precisely when $\left(x^{n}+1\right) \mid f+g$.

The usual addition and multiplication of polynomials then also yield an addition and a multiplication on R_{n} :

$$
\left(f \bmod \left(x^{n}+1\right)\right)+\left(g \bmod \left(x^{n}+1\right)\right)=\left(f+g \bmod \left(x^{n}+1\right)\right)
$$

and

$$
\left(f \bmod \left(x^{n}+1\right)\right) \cdot\left(g \bmod \left(x^{n}+1\right)\right)=\left(f g \bmod \left(x^{n}+1\right)\right)
$$

Arithmetic in R_{n} is quite analogous to arithmetic in $\mathbb{Z} / m \mathbb{Z}$.
Example. In R_{n} one has $x^{n}=1$ (since obviously $\left(x^{n}+1\right)$ divides $x^{n}+1$). More generally $x^{r+q n}=x^{r}$. Namely, $x^{r+q n}=x^{r} \cdot\left(x^{n}\right)^{q} \equiv$ $x^{r} \cdot 1^{q} \equiv x^{r} \bmod \left(x^{n}+1\right)$. So computing in R_{n} one may take in x^{m} the exponent modulo n. Moreover, if $f, g \in \mathbb{F}_{2}[x]$ both have degree $\leq n-1$, and $f \neq g$, then also $f \not \equiv g \bmod \left(x^{n}+1\right)$. For if $\left(x^{n}+1\right) \mid f+g$, then $f+g=\left(x^{n}+1\right) h$ for certain $h \in \mathbb{F}_{2}[x]$, and $h \neq 0$ since $f \neq g$. This yields a contradiction, because $\left(x^{n}+1\right) h$ has degree at least n, whereas $f+g$ has degree at most $n-1$.

In R_{7} it holds that (verify yourself!)

$$
\begin{aligned}
\left(x^{4}+x+1\right) \cdot\left(x^{5}+x^{2}+1\right) & =x^{9}+x^{6}+x^{4}+x^{6}+x^{3}+x+x^{5}+x^{2}+1 \\
& =x^{2}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 \\
& =x^{5}+x^{4}+x^{3}+x+1 .
\end{aligned}
$$

As vector spaces over \mathbb{F}_{2} one has $\mathbb{F}_{2}^{n} \cong R_{n}$, for example using the isomorphism sending $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in \mathbb{F}_{2}^{n}$ to $a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1} \in$ R_{n}. In this way a linear code of length n is considered as a set of polynomials of degree $<n$, with the coefficients of a polynomial exactly the coordinates of the corresponding code word. Linearity of the code translates into the property: when f and g are polynomials in the code, so is $f+g$.

TheOrem 7.4. A nonempty subset $C \subset R_{n}$ defines a cyclic linear code, precisely when the next two conditions hold:
(1) For all $f, g \in C$, also $f+g \in C$;
(2) For all $f \in C$ and all $g \in R_{n}$, one has $g f \bmod \left(x^{n}+1\right) \in C$.

Proof. If the two conditions hold, then the first one implies that C is linear. The second one, applied with $g=x \bmod \left(x^{n}+1\right)$, yields that if $a_{0}+\ldots+a_{n-1} x^{n-1} \in C$, then also $x\left(a_{0}+\ldots+a_{n-1} x^{n-1}\right)=$ $a_{0} x+\ldots+a_{n-1} x^{n} \equiv a_{n-1}+a_{0} x+\ldots+a_{n-2} x^{n-1} \bmod \left(x^{n}+1\right) \in C$. So indeed C is cyclic.

Vice versa, is C linear and cyclic, then the first condition holds. For the second one, suppose $g=\sum x^{n_{j}}$ exponents $0 \leq n_{1}<\ldots<n_{t}<n$, and let $f \in C$. Since C is cyclic, $x f, x^{2} f, \ldots, x^{n-1} f$ (all taken modulo $x^{n}+1$) are in C as well. By linearity of C then also $g f=\sum x^{n_{j}} f \in C$. This proves the theorem.

The above theorem reduces the problem of describing all cyclic linear codes of given length n, to the question: what are the subsets of R_{n} which are closed under addition, and under multiplication by arbitrary elements of R_{n}. In algebra any such subset is called an 'ideal'.

An analogous problem for ideals in \mathbb{Z} is maybe more familiar: here the nonempty subsets closed under addition and under multiplication by arbitrary integers, are just the sets $n \mathbb{Z}$ (the multiples of an arbitrary, fixed n). Similarly, the nonempty subsets of $\mathbb{Z} / n \mathbb{Z}$ closed under addition and under multiplication by arbitrary elements of $\mathbb{Z} / n \mathbb{Z}$, are precisely the subsets $(m \bmod n) \cdot \mathbb{Z} / n \mathbb{Z}$ with m any divisor of n. Those who know a proof of the latter statement will note that the theorem below is shown analogously.

Theorem 7.5. A cyclic, linear code $C \subset R_{n}$ can be written as

$$
C=C_{f}:=\left\{g \bmod \left(x^{n}+1\right) \mid g \in \mathbb{F}_{2}[x] \text { is a multiple of } f\right\}
$$

where f is a divisor of $x^{n}+1$. To C, a unique such f exists.
Moreover, any C_{f} with $f \in \mathbb{F}_{2}[x]$ defines a cyclic, linear code.
Proof. By Theorem 7.4 any C_{f} is a cyclic, linear code. Vice versa let $C \subset R_{n}$ be a cyclic, linear code. If $C=\{0\}$, take $f=x^{n}+1$; then $C=C_{f}$ and $f \mid\left(x^{n}+1\right)$.

Now assume $C \neq\{0\}$. Take $f \in C$ with $f \neq 0$ of minimal degree. Since C is cyclic and linear, all multiples of f (modulo $\left(x^{n}+1\right)$) are
also in C, hence $C_{f} \subset C$. We now do division with remainder of $x^{n}+1$ by f. This yields

$$
x^{n}+1=q f+r
$$

for some $q, r \in \mathbb{F}_{2}[x]$, with $\operatorname{deg}(r)<\operatorname{deg}(f)$. Here $r \equiv q f \bmod \left(x^{n}+1\right)$, so $r \bmod \left(x^{n}+1\right) \in C$. Of all elements $\neq 0$ in C, f has the smallest possible degree, and therefore $r=0$. So indeed f divides $x^{n}+1$.

We now show that every $g \bmod \left(x^{n}+1\right) \in C$ is in C_{f}. Write $g=p f+s$ with $p, s \in \mathbb{F}_{2}[x]$ and $\operatorname{deg}(s)<\operatorname{deg}(f)$. Since $p f \bmod \left(x^{n}+\right.$ 1) $\in C_{f} \subset C$, we have $s \equiv g+p f \bmod \left(x^{n}+1\right) \in C$. As before, one concludes $s=0$, so $g \bmod \left(x^{n}+1\right) \in C_{f}$.

Unicity. Assume $C_{f}=C_{\tilde{f}}$ for two divisors f, \tilde{f} of $x^{n}+1$. Then $\tilde{f} \in C_{f}$, so g exists such that $\tilde{f} \equiv f g \bmod \left(x^{n}+1\right)$. This in turn means that h exists such that $\tilde{f}+f g=\left(x^{n}+1\right) h$. It follows that f divides \tilde{f} and, reversing the roles of f and \tilde{f}, also \tilde{f} divides f. This is only possible when $f=\tilde{f}$.

This proves the theorem.
Definition 7.6. Given a cyclic linear code C, the (unique) polynomial f with $f \mid\left(x^{n}+1\right)$ and $C=C_{f}$ is called the generator of C.

Using the generator f of a cyclic linear code $C \subset R_{n}$ one can easily verify whether some $c \in R_{n}$ is in C : reasoning as in the proof above, this is the case precisely when f divides c.

The dimension of C is determined by f as follows:
Theorem 7.7. If f is the generator of a cyclic linear code $C \subset R_{n}$, then $\operatorname{dim} C=n-\operatorname{deg}(f)$.

Proof. Let ℓ be the degree of the generator f of C and take $g \in \mathbb{F}_{2}[x]$ such that $f g=x^{n}+1$. Write

$$
f=1+a_{1} x+\ldots+a_{\ell-1} x^{\ell-1}+x^{\ell}
$$

and

$$
g=1+b_{1} x+\ldots+b_{n-\ell-1} x^{n-\ell-1}+x^{n-\ell}
$$

with $a_{j}, b_{j} \in \mathbb{F}_{2}$. Consider the map

$$
\varphi: R_{n} \longrightarrow C,
$$

given by $\varphi\left(h \bmod \left(x^{n}+1\right)\right)=f h \bmod \left(x^{n}+1\right)$. This map is linear, and its image is all of C. Hence $n=\operatorname{dim} \operatorname{Ker}(\varphi)+\operatorname{dim} C$. In C one has the elements $f, x f, \ldots, x^{n-\ell-1} f$, corresponding to the code words

$$
\begin{gathered}
\left(1, a_{1}, \ldots, a_{\ell-1}, 1,0, \ldots, 0\right) \\
\left(0,1, a_{1}, \ldots, a_{\ell-1}, 1,0, \ldots\right) \\
\ldots \\
\left(0, \ldots, 0,1, a_{1}, \ldots, a_{\ell-1}, 1\right)
\end{gathered}
$$

From this we see $\operatorname{dim} C \geq n-\ell$.

Now consider $\operatorname{Ker} \varphi$. For every $a \geq 0$ is $x^{a} g \bmod \left(x^{n}+1\right) \in \operatorname{Ker} \varphi$, because $\varphi\left(x^{a} g \bmod \left(x^{n}+1\right)\right)=x^{a} g f \bmod \left(x^{n}+1\right) \equiv 0$. Arguing as before, we see that $g, x g, \ldots x^{\ell-1} g$ are independent elements in $\operatorname{Ker} \varphi$, so $\operatorname{dim} \operatorname{Ker}(\varphi) \geq \ell$.

As $\operatorname{dim} \operatorname{Ker}(\varphi)+\operatorname{dim} C=n$, it follows that $\operatorname{dim} \operatorname{Ker}(\varphi)=\ell$ and $\operatorname{dim} C=n-\ell$, which is what we wanted to show.

Corollary 7.8. Let $f=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{\ell} x^{\ell} \in \mathbb{F}_{2}[x]$ such that $f \mid x^{n}+1$. Then the set

$$
\left\{f, x f, \ldots, x^{n-\ell-1} f\right\}
$$

forms a basis for C_{f}. Moreover, the matrix

$$
\left[\begin{array}{ccccccccc}
a_{0} & a_{1} & \ldots & a_{\ell-1} & a_{\ell} & 0 & 0 & \ldots & 0 \\
0 & a_{0} & a_{1} & \ldots & a_{\ell-1} & a_{\ell} & 0 & \ldots & 0 \\
& & & & \vdots & & & & \\
0 & 0 & \ldots & 0 & a_{0} & a_{1} & \ldots & a_{\ell-1} & a_{\ell}
\end{array}\right]
$$

is a generator matrix for C_{f}, where $a_{0}=a_{\ell}=1$.

Let $C \subset R_{n}$ be a cyclic, linear code with generator $f \mid\left(x^{n}+1\right)$. By Corollary 7.3. C^{\perp} is cyclic and linear as well. In particular C^{\perp} also has a generator, say g. From Proposition 3.3 and Theorem 7.7 it follows that

$$
\operatorname{deg}(g)=n-\operatorname{dim} C^{\perp}=\operatorname{dim} C=n-\operatorname{deg}(f) .
$$

In order to find, for a given f, the corresponding g we now consider multiplication in R_{n} more closely.

Take $h=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}$ and $k=b_{0}+b_{1} x+\ldots b_{n-1} x^{n-1}$. Then $h k=c_{0}+c_{1} x+\ldots c_{2 n-2} x^{2 n-2}$, with $c_{j}=\sum a_{p} b_{q}$ (sum over all p, q such that $0 \leq p, q \leq n-1$ and $p+q=j$). So modulo $\left(x^{n}+1\right)$, which means in R_{n}, one has

$$
h k \equiv\left(c_{0}+c_{n}\right)+\left(c_{1}+c_{n+1}\right) x+\ldots+\left(c_{n-2}+c_{2 n-2}\right) x^{n-2}+c_{n-1} x^{n-1}\left(\bmod x^{n}+1\right) .
$$

Here the coefficients are

$$
\begin{aligned}
c_{0}+c_{n}= & a_{0} b_{0}+a_{1} b_{n-1}+a_{2} b_{n-2}+\ldots+a_{n-1} b_{1} ; \\
c_{1}+c_{n+1}= & a_{0} b_{1}+a_{1} b_{0}+a_{2} b_{n-1}+\ldots+a_{n-1} b_{0} ; \\
& \cdots \\
c_{n-2}+c_{2 n-2}= & a_{0} b_{n-2}+a_{1} b_{n-3}+\ldots+a_{n-2} b_{0}+a_{n-1} b_{n-1} ; \\
c_{n-1}= & a_{0} b_{n-1}+a_{1} b_{n-2}+\ldots+a_{n-1} b_{0} .
\end{aligned}
$$

One recognizes dot products on \mathbb{F}_{2}^{n} : put $v=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ for the vector of coefficients of h, and $w_{\text {rev }}=\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right)$ for the (given in reverse ordering) vector of coefficients of k. Then the calculated coefficients of the product are $v \cdot \sigma\left(w_{\mathrm{rev}}\right), v \cdot \sigma^{2}\left(w_{\mathrm{rev}}\right), \ldots v \cdot \sigma^{n-1}\left(w_{\mathrm{rev}}\right), v$. $w_{\text {rev }}$ and these are all 0 . So $w_{\text {rev }} \in C^{\perp}$.

This observation leads to the following result.

Proposition 7.9. Suppose $x^{n}+1=f g$ for certain polynomials $f, g \in \mathbb{F}_{2}[x]$, and let $C \subset R_{n}$ be the cyclic, linear code with generator f. Then the generator of C^{\perp} is $g^{*}:=x^{\operatorname{deg}(g)} g\left(x^{-1}\right)$.

Proof. Let the notation be as above and let $w^{*} \in \mathbb{F}_{2}^{n}$ be the vector of the coefficients of g^{*}. Then we have $w^{*}=\sigma^{\operatorname{deg}(g)+1}\left(w_{\text {rev }}\right)$ and by Corollary 7.3, we have $w^{*} \in C^{\perp}$.

Therefore $C_{g^{*}}$ is a subspace in C^{\perp}. So we get

$$
\begin{aligned}
\operatorname{deg}(f)=n-\operatorname{deg}\left(g^{*}\right)=\operatorname{dim}\left(C_{g^{*}}\right) \leq \operatorname{dim}\left(C^{\perp}\right) & =n-\operatorname{dim}(C) \\
& =n-(n-\operatorname{deg}(f)) \\
& =\operatorname{deg}(f)
\end{aligned}
$$

and hence $\operatorname{dim}\left(C_{g^{*}}\right)=\operatorname{deg}(f)$. This proves $C^{\perp}=C_{g^{*}}$.
Exercise. Compute the parity-check matrix of the cyclic code C_{f} of length 7 where $f=x^{3}+x+1$ and conclude that C_{f} is a $[7,4,3]$ Hamming code.

In practice the software package Magma is perfectly suited for calculating with (cyclic and other) codes. An online Magma calculator can be found on

> http://magma.maths.usyd.edu.au/calc/

The example on the next case deals with a cyclic [23,12]-code, and Magma computes that it is a $[23,12,7]$-code. The commands

Dimension(C);
Basis(C);
MinimumWord(C);
yield more information on this code.

Enter your code in the box below. Click on "Submit" to have it evaluated by Magma.

The following is an open problem in coding theory: do cyclic, linear [$\left.n_{j}, k_{j}, d_{j}\right]$-codes exist, having all of the next three properties:
(1) $\lim _{j \rightarrow \infty} n_{j}=\infty$;
(2) $\lim _{j \rightarrow \infty} k_{j} / n_{j}>0$;
(3) $\lim _{j \rightarrow \infty} d_{j} / n_{j}>0$.

8. Exercises on binary linear codes

(1) Generalise the construction of the Hamming code H (which uses three circles in 2-space) to a construction using four balls in 3 -space.

What are the length n, the dimension k, and the minimal distance d of the resulting code?
(2) Verify that the Hamming weight satisfies the triangle inequality: $|v+w| \leq|v|+|w|$ for all $v, w \in \mathbb{F}_{2}^{n}$.

Moreover, show that if $|v+w|=|v|+|w|$, then $v \cdot w=0$.
(3) For $v \in \mathbb{F}_{2}^{n}$ and $m \in \mathbb{Z}_{\geq 1}$, the Hamming ball with radius m around v denoted $B_{m}(v)$ is defined by

$$
B_{m}(v):=\left\{c \in \mathbb{F}_{2}^{n} ;|c-v|\right\} .
$$

Determine \# $B_{m}(v)$.
(4) Suppose C is a linear code. Let $E \subset C$ be the set of all words in C that have even weight. Show that E is a linear code as well. Moreover, show that either $E=C$, or
$\operatorname{dim}(E)=\operatorname{dim}(C)-1$.
(5) Show that if C_{1} and C_{2} are linear codes of the same length, then $C_{1} \cap C_{2}$ is also a linear code.
(6) Construct the following binary codes if possible, or explain why it is not possible.
(a) $[6,3,3]$
(b) $[6,32,2]$
(c) $[k, 3, k-1]$
(d) $[6,15,3]$
(7) Find the maximum number of codewords of length $n=4$ in a code in which any single error can be detected. Give an example of such a code. What about for general n ?
(8) Find the dimension of code $C=\langle S\rangle$ for the following S. Find a generating matrix and a parity check matrix for these codes. Compute the minimal distance for each code.
(a) $S=\{000,111\}$,
(b) $S=\{0110,1010\}$,
(c) $S=\{0101,1101,1001\}$.
(9) Let C be a self-dual binary code with parameters $[n, k, d]$.
(i) Show that the all-one vector $(1,1, \ldots, 1)$ is in C.
(ii) Show that either all the codewords in C have weight divisible by 4 ; or exactly half of the codewords in C have weight divisible by 4 while the other half have even weight not divisible by 4 .
(iii) Let $n=6$. Determine d.
(10) Starting from the Hamming code H, one constructs a code H^{\prime} of length 8 , by adding a parity bit as follows: if $c \in H$ has even weight, then $c \mid 0$ (this is c, followed by the bit 0) is in H^{\prime}; and if the weight of c is odd, then $c \mid 1 \in H^{\prime}$.

Verify that H^{\prime} is linear. What are the dimension and the minimal distance of H^{\prime} ?
(11) Show that if the code C satisfies $C \subset C^{\perp}$, then every word in C has even weight. Is the converse true as well?
(12) Try to construct examples of codes of length 2,4 , and 6 satisfying $C=C^{\perp}$.
(13) Let $A=\left(a_{i, j}\right)$ be an $n \times n$ matrix with all $a_{i, j} \in \mathbb{F}_{2}$ and $a_{i, j}=a_{j, i}$ for all i, j. Take $b \in \mathbb{F}_{2}^{n}$ the column vector with coordinates $a_{1,1}, a_{2,2}, \ldots, a_{n, n}$. Prove that the equation $A x=b$ has a solution $x \in \mathbb{F}_{2}^{n}$. (Hint: You may use Proposition 3.4-(1))
(14) Let C be an $[n, k]$-code with parity-check matrix

$$
H:=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

(a) Determine n and k.
(b) What can we say about the minimal distance?
(15) Determine all [3, 3, 1] codes up to equivalence.
(16) Construct a binary code C of length 6 as follows: for every $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{F}_{2}^{3}$, construct a 6 -bit word $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in$ C, where

$$
\begin{aligned}
& x_{4}=x_{1}+x_{2}+x_{3}, \\
& x_{5}=x_{1}+x_{3}, \\
& x_{6}=x_{2}+x_{3} .
\end{aligned}
$$

(i) Show that C is a linear code.
(ii) Find a generator matrix and a parity-check matrix for C.
(17) Show that for $m \geq 2$, the generalised Hamming code $H(m)$ contains the word $11 \ldots 1$ consisting of ones only.
(18) Calculate the number of words of weight 4 in the generalised Hamming code $H(4)$. Which weights occur in the code $H(4)$?
(19) Show that if the binary linear code C contains the word $11 \ldots 1$ consisting of ones only, then the enumerator satisfies $W_{C}(x, y)=W_{C}(y, x)$.
(20) In the text it is indicated that the Hamming code H is equivalent to a cyclic code. Find the generator of this cyclic code.
(21) If C is a cyclic code, show that the subset of all words with even weight is a cyclic code as well.
(22) Let $C=\left\{\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{F}_{2}^{n}: \sum_{i=0}^{n-1} a_{i}=0\right\}$. Show that C is cyclic code and determine its generator.
(23) Determine the smallest possible length for a cyclic code C for which $1+x+x^{2}+x^{4}+x^{6}$ is the generating polynomial.
(24) Determine the following:
(i) the number of binary cyclic codes of length 21;
(ii) all values k for which there exists a binary $[21, k]$-cyclic code;
(iii) the number of binary $[21,12]$-cyclic codes;
(iv) the generator polynomial for each of the binary $[21,12]$ cyclic codes.
(25) Let n and m be integers with $n \geq 1$. Define the linear map $\varphi: R_{n} \rightarrow R_{n}$ by $\varphi\left(x^{a}\right):=x^{m a} \bmod \left(x^{n}+1\right)$.
(a) Show that if φ is surjective and $C \subset R_{n}$ is a linear cyclic code, then so is $\varphi(C)$.
(b) Show that if $\operatorname{gcd}(n, m)=1$, then φ is bijective, and it permutes the coordinates of code words.
(c) Consider the special case $n=7$ and $m=3$, and let C be the linear cyclic code in R_{7} with generator $x^{3}+x+1$. Find the generator of the code $\varphi(C)$.
(26) Let $g(x)=1+x^{4}+x^{6}+x^{7}+x^{8} \in \mathbb{F}_{2}[x]$ be the generator polynomial of a binary [15, 7]-cyclic code C. Write a generator matrix and a parity-check matrix for C. Construct a generator matrix of in the standard form.
(27) Let C be a binary cyclic code of length $n \geq 3$ with generator polynomial $g(x) \neq 1$, where n is the smallest positive integer for which $x^{n}+1$ is divisible by $g(x)$. Show that C has minimum distance at least 3 .
(28) A codeword $e(x)$ of a binary cyclic code C of length n is called an idempotent if $e^{2}(x)=e(x) \bmod x^{n}+1$. If an idempotent $e(x)$ is also a generator of C, it is called a generating idempotent. Let $g(x)$ be the generator polynomial of a binary cyclic code C and let $h(x) \in \mathbb{F}_{2}[x]$ be such that $\left(x^{n}+1\right)=g(x) h(x)$.
(i) Show that if $\operatorname{gcd}(g(x), h(x))=1$ then C has a unique generating idempotent. (Hint: Bézout's identity holds in $\mathbb{F}_{2}[x]$.)
In particular, show that if n is odd, then there always exists a unique generating idempotent for a binary cyclic
code of length n. (Hint: If $k \geq 2$ and $g(x)^{k}$ divides $f(x)$ then $g(x)$ also divides the formal derivative $f^{\prime}(x)$ of $f(x)$. Here the formal derivative f^{\prime} is simply defined by the linear operator $x^{n} \mapsto n x^{n-1}$ that satisfies the usual product rule).
(ii) Consider H^{\prime} consisting of all strings $\left(d_{1}, d_{2}, d_{4}, d_{3}, p_{2}, p_{1}, p_{3}\right)$ with d_{i} and p_{j} satisfying the same properties used to define the [7,4,3] Hamming code H (see page 5 of the lecture notes for the definition). Show that H^{\prime} is a cyclic code equivalent to H and find its generating idempotent element.
(29) Let C be a binary cyclic code of length n generated by a polynomial $g(x)$ that divides $\left(x^{n}+1\right)$.
(i) Prove that, if $g(x)$ is divisible by $x+1$, then all the codewords have even weight.
(ii) Suppose n is odd. Show that the all-one vector $(1, \cdots, 1) \in \mathbb{F}_{2}^{n}$ is a codeword in C if and only if $g(x)$ is not divisible by $x+1$.
(iii) Suppose n is odd. Show that C contains a codeword of odd weight if and only if the all-one vector $(1, \cdots, 1) \in \mathbb{F}_{2}^{n}$ is a codeword.

CHAPTER 2

Security

1. Advanced Encryption Standard

In 2001 the American National Institute of Standards and Technology (NIST) announced a new data-encryption system for safeguarding sensitive information: the AES (Advanced Encryption Standard). This replaces the older DES (Data Encryption Standard), which has been used since 1976. By now, the AES is used internationally for a lot of data transmission. For example, the American National Security Agency (NSA) recommends AES, and therefore it is used by (among others) the American government for all its secret and top-secret data transmission. Various data compression algorithms (e.g., WinRAR and WinZip) offer possibilities to secure data by means of the AES.

The AES is a special case of the system 'Rijndael', invented in Leuven by Vincent Rijmen and Joan Daemen. A short mathematical explanation of it was offered in 2002 by professor H.W. Lenstra from Leiden University. His text can be found at the end of this section; we now supplement it with additional details.

In the AES, the data one wishes to protect is first subdivided into blocks ('states') consisting of 16 bytes (so, a state contains $16 \cdot 8=$ 128 bits). Furthermore, there is a secret 'key', which is also a block consisting of 16 bytes. For some applications such as 'top-secret' data, keys of 24 or even 32 bytes are used. By means of this key a bijection from the set of 'states' to the set of 'states' is constructed. Applying this bijection to the 'states' we want to protect, results in new data. Reconstructing the original data from it is easy using the secret key, however without the key it appears extremely difficult to invert the bijection used, and thus to decrypt the protected data.

Bytes. The space of all possible bytes is by definition \mathbb{F}_{2}^{8}. Just as for cyclic codes of length 8 , we sometimes identify this space with $R_{8}:=\mathbb{F}_{2}[x] /\left(x^{8}+1\right)$. Compared with the case of cyclic codes, this is done in reverse here: identify $\left(a_{7}, a_{6}, a_{5}, \ldots, a_{1}, a_{0}\right)$ with $a_{7} x^{7}+a_{6} x^{6}+$ $\ldots+a_{1} x+a_{0}$. Multiplication by x in R_{8} is therefore the same as 'shifting everything one position to the left' in \mathbb{F}_{2}^{8}. The map
$\lambda: R_{8} \rightarrow R_{8}, f \mapsto\left(x^{4}+x^{3}+x^{2}+x+1\right) f+x^{6}+x^{5}+x+1 \bmod \left(x^{8}+1\right)$
is a bijection on the space of bytes: namely, $\lambda=\tau_{g} \circ \mu_{h}$, with τ_{g} the translation over $g=x^{6}+x^{5}+x+1$ and μ_{h} the multiplication (modulo $x^{8}+1$) by $h=x^{4}+x^{3}+x^{2}+x+1$. Hence λ is a bijection provided both τ_{g} and μ_{h} are. Every translation is indeed bijective (with translation over the opposite vector as inverse; so in this case $\tau_{g}^{-1}=\tau_{g}$). It remains to show that μ_{h} is invertible.

For this we note that in $\mathbb{F}_{2}[x]$ one has $(1+x)^{2}=1+x^{2}$, and hence $(1+x)^{4}=\left(1+x^{2}\right)^{2}=1+x^{4}$, so finally $(1+x)^{8}=\left(1+x^{4}\right)^{2}=1+x^{8}$. So $1+x^{8}$ factors as the eighth power of $1+x$. This $1+x$ is no factor of $h=x^{4}+x^{3}+x^{2}+x+1$, since otherwise $h(1)=0$. So h and $s:=1+x^{8}$ have no common factor (except 1).

The extended Euclidean algorithm will therefore provide a linear combination of h and s equal to 1 . Explicitly:

$$
\begin{array}{rlrlc}
0 \cdot h+ & 1 \cdot s & = & x^{8}+1 \\
1 \cdot h & + & 0 \cdot s & = & x^{4}+x^{3}+x^{2}+x+1 \\
x^{4} \cdot h & + & 1 \cdot s & = & x^{7}+x^{6}+x^{5}+x^{4}+1 \\
\left(x^{3}+x^{4}\right) \cdot h & + & 1 \cdot s & = & x^{3}+1 \\
\left(1+x^{4}+x^{5}\right) \cdot h & + & x \cdot s & = & x^{3}+x^{2}+1 \\
\left(1+x^{3}+x^{5}\right) \cdot h & + & (1+x) \cdot s & = & x^{2} \\
\left(1+x+x^{5}+x^{6}\right) \cdot h & + & x^{2} \cdot s & = & x^{2}+1 \\
\left(x+x^{3}+x^{6}\right) \cdot h & + & \left(1+x+x^{2}\right) \cdot s & = & 1 .
\end{array}
$$

Check for yourself how these lines were obtained; the first and second are evident, and subsequent lines are linear combinations of the two directly preceding ones, in such a way that the right-hand-side has degree below the expression two lines above it. The bottom line, considered modulo $s=x^{8}+1$, yields that $\left(x+x^{3}+x^{6}\right) h \equiv 1 \bmod \left(x^{8}+1\right)$.

Conclusion: $\mu_{x+x^{3}+x^{6}}$ satisfies

$$
\mu_{x+x^{3}+x^{6}} \circ \mu_{h}(f)=\left(x+x^{3}+x^{6}\right) h f \bmod \left(x^{8}+1\right)=f \bmod \left(x^{8}+1\right)
$$

and also $\mu_{h} \circ \mu_{x+x^{3}+x^{6}}(f)=f \bmod \left(x^{8}+1\right)$, for every f.
Hence μ_{h} is invertible, with $\mu_{h}^{-1}=\mu_{x+x^{3}+x^{6}}$. This provides the inverse for λ as well, namely

$$
\lambda^{-1}=\mu_{h}^{-1} \circ \tau_{g}=\mu_{x+x^{3}+x^{6}} \circ \tau_{g} .
$$

So this map sends an f to $\left(x+x^{3}+x^{6}\right)(f+g) \bmod \left(x^{8}+1\right)$. Since $\left(x+x^{3}+x^{6}\right)\left(x^{6}+x^{5}+x+1\right) \equiv x^{2}+1 \bmod \left(x^{8}+1\right)$, we have a simpler description:

$$
\lambda^{-1}(f)=\left(x+x^{3}+x^{6}\right) f+x^{2}+1 \bmod \left(x^{8}+1\right) .
$$

Calculating in a structure such as $\mathbb{F}_{2}[x] /\left(x^{8}+1\right)$ may be done, using the Magma package, as follows.
$\mathrm{F} 2:=\mathrm{GF}$ (2) ;
P<X>:=PolynomialRing (F2);
I:=ideal<P | X^8+1 >;
$R<x>:=P / I$;

```
la:=function(f)
            return R!((1+x+x^2+x^3+x^4)*R!f+x^6+x^5+x+1);
    end function;
g:=1+x^5; g;
la(g);
la(la(g));
la(la(la(g)));
la(la(la(la(g))));
```

A second bijection on bytes we now discuss, uses modular arithmetic with polynomials as well. In this case not modulo $x^{8}+1$ in analogy with coding theory, but modulo m, where

$$
m=x^{8}+x^{4}+x^{3}+x+1
$$

Calculating in $\mathbb{F}_{2}[x] /(m)$ works as expected: $f \equiv g \bmod (m)$ means that $f+g$ is a multiple of m. In this way, using division with remainder by m, every polynomial is equivalent to a polynomial of degree <8. And if f, g both have degree <8, then $f \equiv g \bmod (m)$ if and only if $f=g$. So $\mathbb{F}_{2}[x] /(m)$ can be identified with the space of all bytes, and multiplication modulo (m) yields an operation on this space.

There is a big difference between multiplication modulo $\left(x^{8}+1\right)$ and modulo (m). The reason for this is the fact that m is irreducible: m is not a multiple of any polynomial of positive degree <8. This can be verified using a rather long and boring computation, or alternatively, using a system such as Magma, and typing
F2 : = GF (2) ;
$\mathrm{P}\langle\mathrm{x}\rangle$:= PolynomialRing(F2);
Factorization ($x^{\wedge} 8+x^{\wedge} 4+x^{\wedge} 3+x+1$) ;
This property has a strong consequence: take any $g \in \mathbb{F}_{2}[x]$ of degree <8, and $g \neq 0$. Then g and m have no common factor $\neq 1$. The extended Euclidean algorithm therefore yields a linear combination $p g+q m=1$, for certain polynomials p, q. Modulo m this means that p is an inverse of g. So every $g \neq 0$ in $\mathbb{F}_{2}[x] /(m)$ has an inverse.

So in $\mathbb{F}_{2}[x] /(m)$ one can not only add/substract and multiply, but also divide (=multiply by the inverse). Note that such an inverse is unique: is $p g \equiv p^{\prime} g \equiv 1 \bmod (m)$, then $g\left(p+p^{\prime}\right) \equiv 0 \bmod (m)$, and multiplying this by p shows $p+p^{\prime} \equiv 0 \bmod (m)$ which means $p \equiv$ $p^{\prime} \bmod (m)$. The inverse of g is denoted g^{-1}.

So it holds that $\mathbb{F}_{2}[x] /(m)$ is a field, consisting of $2^{8}=256$ elements. We also write \mathbb{F}_{256} for this field.

The map

$$
\sigma: \mathbb{F}_{2}^{8} \rightarrow \mathbb{F}_{2}^{8}, \quad f \mapsto\left\{\begin{array}{l}
\lambda(0)=x^{6}+x^{5}+x+1 \text { if } f=0 ; \\
\lambda\left((f \bmod (m))^{-1}\right) \text { otherwise }
\end{array}\right.
$$

in the AES is called the S-box. It is a bijection on the space of bytes, because the map $\mathbb{F}_{256} \rightarrow \mathbb{F}_{256}$ sending 0 to 0 and inverting all other elements, is its own inverse, and the composition of it with the also invertible λ yields σ.

From Lenstra's text on this subject one may conclude, that the order of σ (the minimal number $n>0$ such that applying σn times yields the identity) equals $2 \cdot 3^{4} \cdot 29 \cdot 59=277182$. Nevertheless, σ is just a composition of a bijection of order 2 (namely, inversion in \mathbb{F}_{256}) and a bijection of order 4 (namely λ). Determining the order of σ is without a computer quite cumbersome; Using, e.g., Magma or Maple or Mathematica turns it into a pleasant exercise!

A natural question is why the polynomial $h=x^{4}+x^{3}+x^{2}+$ $x+1$ (with the necessary property $h(1) \neq 0$) and the polynomial $g=x^{6}+x^{5}+x+1$ and the (necessarily irreducible) polynomial $m=x^{8}+x^{4}+x^{3}+x+1$ are used in defining the S-box, instead of other polynomials. A partial answer to this question is given in the bachelor's thesis (written in Dutch) of Petra Klooster (2014), see http://fse.studenttheses.ub.rug.nl/11887/.

Words. A word is by definition a tuple $w=\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ in which the b_{j} are bytes. The map σ described above, provides a bijection on words which we denote by σ as well:

$$
\sigma(w)=\sigma\left(b_{0}, b_{1}, b_{2}, b_{3}\right):=\left(\sigma\left(b_{0}\right), \sigma\left(b_{1}\right), \sigma\left(b_{2}\right), \sigma\left(b_{3}\right)\right) .
$$

A second operation on words (which in fact will only be used on parts of the secret key) is called ξ; it is given as

$$
\xi(w)=\xi\left(b_{0}, b_{1}, b_{2}, b_{3}\right):=\left(\sigma\left(b_{1}\right), \sigma\left(b_{2}\right), \sigma\left(b_{3}\right), \sigma\left(b_{0}\right)\right) .
$$

So the map ξ can be regarded as a shift on the 4 bytes in a word, followed by the map σ.

As an alternative description: write $w=\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ as a polynomial $b_{0}+b_{1} y+b_{2} y^{2}+b_{3} y^{3}$, then $\xi(w)=\sigma\left(y^{3} w \bmod \left(y^{4}+1\right)\right)$.

In a similar way we define bijections μ, ν on words: take ($x, 1,1, x+$ 1) $\in\left(\mathbb{F}_{2}[x] /(m)\right)^{4}$. Regard this as the element

$$
c:=x+y+y^{2}+x y^{3}+y^{3} \in\left(\mathbb{F}_{2}[x] /(m)\right)[y] /\left(y^{4}+1\right) .
$$

So, here we view a word as a polynomial

$$
c_{0}(x)+c_{1}(x) y+c_{2}(x) y^{2}+c_{3}(x) y^{3}
$$

in the variables x and y, with coefficients in \mathbb{F}_{2}. Such polynomials we multiply, with the agreement that powers of y are considered modulo $y^{4}+1$. To put it differently: we agree that $y^{n}=y^{m}$ as soon as $m \equiv$ n mod 4 . And considering the polynomials $c_{j}(x) \in \mathbb{F}_{2}[x]$ we have here, we agree to compute with them modulo $m=x^{8}+x^{4}+x^{3}+x+1$. Under these conditions, the map μ on words, defined for any word
$w=c_{0}(x)+c_{1}(x) y+c_{2}(x) y^{2}+c_{3}(x) y^{3}$, is defined by

$$
\mu(w):=c \cdot w
$$

With

$$
d:=x^{3}+x^{2}+x+x^{3} y+y+x^{3} y^{2}+x^{2} y^{2}+y^{2}+x^{3} y^{3}+x y^{3}+y^{3}
$$

one defines similarly the map ν on words by

$$
\nu(w):=d \cdot w
$$

An important observation is here, that μ and ν are indeed bijections on the set of words. This is a simple consequence of the fact that

$$
c \cdot d \equiv 1 \bmod \left(y^{4}+1\right)
$$

which is easily verified.
In $\mathbb{F}_{2}[x, y] /\left(m, y^{4}+1\right)$ (so, the polynomials in x and y considered modulo m as well as modulo $y^{4}+1$) it holds that $c^{4}=d^{4}=1$. This implies $\mu^{-1}=\mu^{3}=\nu$ and $\nu^{-1}=\nu^{3}=\mu$.

Example: consider the word

$$
w=00010010001001000100100010000001
$$

As a tuple of four polynomials this is $\left(x^{4}+x, x^{5}+x^{2}, x^{6}+x^{3}, x^{7}+1\right)$ and as a polynomial in x and y it is

$$
w=x^{4}+x+x^{5} y+x^{2} y+x^{6} y^{2}+x^{3} y^{2}+x^{7} y^{3}+y^{3}
$$

By definition $\xi(w)=\sigma\left(x^{5}+x^{2}, x^{6}+x^{3}, x^{7}+1, x^{4}+x\right)$ and this is computed by the action of σ on bytes. To do this manually, the extended Euclidean algorithm needs to be done four times, followed by four times the map λ on bytes. Evidently this is rather elaborate. Using software such as Magma and the code we used to compute the map λ, it appears as follows:

```
sigma := function(f)
        if f eq 0 then
            return la(0);
        else
            I:=ideal<P | X^8+X^4+X^3+X+1 >;
            R<x>:=P/I;
            return la(P!((R!(f))^(-1)));
        end if;
        end function;
sigma(X^5+X^2);
```

In this way we find

$$
\xi(w)=\left(x^{5}+x^{4}+x^{2}+x, x^{6}+x^{4}+x, x^{3}+x^{2}, x^{7}+x^{6}+x^{3}+1\right),
$$

or, expressed as a sequence of zeros and ones,

$$
\xi(w)=00110110010100100000110011001001
$$

The image of w under the map μ can be expressed, using Maple, as a polynomial in x and y as follows (we show at the same time how to verify that the polynomials c, d satisfy $c \cdot d \equiv 1 \bmod \left(y^{4}+1\right)$).

```
F2 := GF(2);
P<X,Y> := PolynomialRing(F2,2);
I:=ideal<P | [X^8+X^4+X^3+X+1,Y^4+1] >;
R<x,y>:=P/I;
c:= x+y+y^2+x*y^3+y^3;
d:=x^3+x^2+x+x^3*y+y+x^3*y^2+
    x^2*y^2+y^2+x^3*y^3+x*y^3+y^3;
c*d;
mu := function (w)
    return c*W;
    end function;
```


Check for yourself that this results in

$$
\mu(w)=10000001000000110011111001000011
$$

States. A 'state' is by definition a tuple $s=\left(w_{0}, w_{1}, w_{2}, w_{3}\right)$ consisting of four words w_{j}. The maps μ, ν and σ which we already know on words, yield maps from states to states by applying them coordinatewise.

As an example,

$$
\sigma\left(w_{0}, w_{1}, w_{2}, w_{3}\right)=\left(\sigma\left(w_{0}\right), \sigma\left(w_{1}\right), \sigma\left(w_{2}\right), \sigma\left(w_{3}\right)\right) .
$$

Another quite simple operation on states is the translation, in cryptography also called 'blinding', and in computer science 'xor'. Given a fixed state s, we denote the translation over s by τ_{s}. On any state x it is given by

$$
\tau_{s}(x)=x+s
$$

Observe that doing τ_{s} twice results in the original state. In other words, τ_{s} equals its inverse: $\tau_{s}^{-1}=\tau_{s}$.

All operations considered on states so far, are in fact maps on the four words in a state separately. To make the system more complex, also some map 'mixing' the four words in a state is needed. This is done by means of a map called ρ. To define it, we write the state s as

$$
s=\left(w_{0}, w_{1}, w_{2}, w_{3}\right)
$$

for words w_{j}. Consider these words as column vectors

$$
w_{0}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right), w_{1}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right), w_{2}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right), \quad w_{3}=\left(\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4}
\end{array}\right)
$$

Here the a_{j}, b_{j}, c_{j} and d_{j} are bytes. In this way the state s is regarded as a 4×4 matrix of bytes, and its columns are the four words in s. Now define

$$
\rho(s)=\rho\left(\left(\begin{array}{llll}
a_{1} & b_{1} & c_{1} & d_{1} \\
a_{2} & b_{2} & c_{2} & d_{2} \\
a_{3} & b_{3} & c_{3} & d_{3} \\
a_{4} & b_{4} & c_{4} & d_{4}
\end{array}\right)\right):=\left(\begin{array}{cccc}
a_{1} & b_{1} & c_{1} & d_{1} \\
b_{2} & c_{2} & d_{2} & a_{2} \\
c_{3} & d_{3} & a_{3} & b_{3} \\
d_{4} & a_{4} & b_{4} & c_{4}
\end{array}\right) .
$$

It is easy to verify that $\rho \circ \rho \circ \rho \circ \rho=i d$, hence $\rho^{-1}=\rho^{3}$.
The key. The secret key used for encrypting and decrypting messages with the AES, is a state $k=\left(w_{0}, w_{1}, w_{2}, w_{3}\right)$ consisting of four (secret) words w_{j}. Since 2^{8} different bytes exist, there are 2^{32} different words and therefore $2^{128}=340.282 .366 .920 .938 .463 .463 .374 .607 .431 .768 .211 .456$ possible keys. This makes the probability of finding it by (repeatedly) guessing, negligible.

Once a key has been agreed, the system begins by expanding the tuple w_{0}, \ldots, w_{3} into a sequence $w_{0}, w_{1}, \ldots \ldots, w_{42}, w_{43}$, in which the w_{j} for $j \geq 4$ are determined as follows:
$w_{j}:= \begin{cases}\xi\left(w_{j-1}\right)+w_{j-4}+x^{(j-4) / 4} \bmod \left(m, y^{4}+1\right) & \text { if } j \equiv 0 \bmod 4 ; \\ w_{j-1}+w_{j-4} & \text { otherwise } .\end{cases}$
Finally the AES. The sequence of words $\left(w_{j}\right)$ constructed above yields for $j=0, \ldots, 10$ the states

$$
k_{j}:=\left(w_{4 j}, w_{4 j+1}, w_{4 j+2}, w_{4 j+3}\right) .
$$

So $k_{0}=k$ is the initial key and the other k_{j} have been constructed from it. Encryption according to the AES with key k is defined as the bijection

$$
\epsilon_{k}:\{\text { states }\} \longrightarrow\{\text { states }\}
$$

given by

$$
\epsilon_{k}=\tau_{k_{10}} \rho \sigma \tau_{k_{9}} \mu \rho \sigma \tau_{k_{8}} \mu \rho \sigma \tau_{k_{7}} \mu \rho \sigma \tau_{k_{6}} \mu \rho \sigma \tau_{k_{5}} \mu \rho \sigma \tau_{k_{4}} \mu \rho \sigma \tau_{k_{3}} \mu \rho \sigma \tau_{k_{2}} \mu \rho \sigma \tau_{k_{1}} \mu \rho \sigma \tau_{k_{0}}
$$

This indeed defines a bijection since each of the involved maps $\rho, \tau_{k_{j}}, \sigma$ and μ is bijective.

It is easy to describe the inverse of ϵ_{k}, the map that decrypts an encrypted message, in terms of the known inverses $\rho^{-1}=\rho^{3}, \tau_{k_{j}}^{-1}=\tau_{k_{j}}$, σ^{-1} (the latter can be described in terms of the maps λ^{3} and inversion in $\left.\mathbb{F}_{2}[x] / m\right)$, and $\mu^{-1}=\nu=\mu^{3}$.

Leiden professor H.W. Lenstra summarised all of this in one page, as follows:

This page deals only with Rijndael with block length 128 and key length 128.
Bytes. A bit is an element of $\mathbf{F}_{2}=\mathbf{Z} / 2 \mathbf{Z}$. Eight bits form one byte. The space \mathbf{F}_{2}^{8} of all bytes is identified with $\left\{f \in \mathbf{F}_{2}[X]: \operatorname{deg} f<8\right\}$ by $\left(b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}\right)=\sum_{h=0}^{7} b_{h} X^{h}$. Define the affine map $\lambda: \mathbf{F}_{2}^{8} \rightarrow \mathbf{F}_{2}^{8}$ by $\lambda(f) \equiv\left(X^{4}+X^{3}+X^{2}+X+1\right) \cdot f+X^{6}+X^{5}+X+1 \bmod \left(X^{8}+1\right)$. The inverse $\lambda^{-1}=\lambda^{3}$ is given by $\lambda^{-1}(f) \equiv\left(X^{6}+X^{3}+X\right) \cdot f+X^{2}+1 \bmod \left(X^{8}+1\right)$. All other operations on $\left\{f \in \mathbf{F}_{2}[X]: \operatorname{deg} f<8\right\}$ will be done not $\bmod X^{8}+1$ but mod $m=X^{8}+X^{4}+X^{3}+X+1$, so that \mathbf{F}_{2}^{8} becomes identified with the field $\mathbf{F}_{256}=\mathbf{F}_{2}[X] /(m)$. Define the map $\sigma: \mathbf{F}_{256} \rightarrow \mathbf{F}_{256}$ by $\sigma(a)=\lambda\left(a^{254}\right)$; here $a^{254}=a^{-1}$ for $a \neq 0$. The cycle lengths of σ are $2,27,59,81$, and 87 , and $\sigma^{-1}=\sigma^{277181}$ is given by $\sigma^{-1}(a)=\left(\lambda^{-1}(a)\right)^{254}$.

Words. Four bytes form one word. The map from the space $\mathbf{F}_{256}^{4}\left(=\mathbf{F}_{2}^{32}\right)$ of all words to itself sending $\left(a_{i}\right)_{i=0}^{3}$ to $\left(\sigma\left(a_{i}\right)\right)_{i=0}^{3}$ is again denoted by σ. The map $\xi: \mathbf{F}_{256}^{4} \rightarrow \mathbf{F}_{256}^{4}$ is defined by $\xi\left(\left(a_{i}\right)_{i=0}^{3}\right)=\left(\sigma\left(a_{i+1}\right)\right)_{i=0}^{3}\left(\right.$ indices mod 4). Write $c=(X, 1,1, X+1)$ and $d=\left(X^{3}+\right.$ $X^{2}+X, X^{3}+1, X^{3}+X^{2}+1, X^{3}+X+1$, and identify \mathbf{F}_{256}^{4} with $\left\{g \in \mathbf{F}_{256}[Y]: \operatorname{deg} g<4\right\}$ by $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=\sum_{i=0}^{3} a_{i} Y^{i}$. Define $\mu, \nu: \mathbf{F}_{256}^{4} \rightarrow \mathbf{F}_{256}^{4}$ by $\mu(g) \equiv c \cdot g \bmod \left(Y^{4}+1\right)$ and $\nu(g) \equiv d \cdot g \bmod \left(Y^{4}+1\right)$. One has $\nu=\mu^{-1}=\mu^{3}$.
States. Four words form one state. The maps from the space $\mathcal{S}=\left(\mathbf{F}_{256}^{4}\right)^{4}\left(=\mathbf{F}_{2}^{128}\right)$ of all states to itself sending $\left(w_{j}\right)_{j=0}^{3}$ to $\left(\mu\left(w_{j}\right)\right)_{j=0}^{3}$, to $\left(\nu\left(w_{j}\right)\right)_{j=0}^{3}$, and to $\left(\sigma\left(w_{j}\right)\right)_{j=0}^{3}$ are again denoted by μ, ν, and σ, respectively. Define $\rho: \mathcal{S} \rightarrow \mathcal{S}$ by $\rho\left(\left(\left(a_{i, j}\right)_{i=0}^{3}\right)_{j=0}^{3}\right)=\left(\left(a_{i, i+j}\right)_{i=0}^{3}\right)_{j=0}^{3}$ (indices $\bmod 4)$. If a state is written as a 4×4-matrix, each column being a word, then ρ shifts the entries in row i cyclically i places to the left ($0 \leq i \leq 3$); similarly, $\rho^{-1}=\rho^{3}$ shifts row i cyclically i places to the right. One has $\rho \sigma=\sigma \rho$. For $s \in \mathcal{S}$, the map $\tau_{s}: \mathcal{S} \rightarrow \mathcal{S}$ is defined by $\tau_{s}(x)=x+s$; one has $\tau_{s}^{-1}=\tau_{s}$ and $\mu \tau_{s}=\tau_{\mu(s)} \mu$.
Key expansion. The key space \mathcal{K} equals \mathcal{S}. For fixed $k=\left(w_{j}\right)_{j=0}^{3} \in \mathcal{K}$, define inductively $w_{4}, w_{5}, \ldots, w_{43} \in \mathbf{F}_{256}^{4}$ by $w_{j}=w_{j-1}+w_{j-4}$ if $j \not \equiv 0 \bmod 4$ and $w_{j}=\xi\left(w_{j-1}\right)+$ $w_{j-4}+\left(X^{(j-4) / 4}, 0,0,0\right)$ if $j \equiv 0 \bmod 4$, and put $k_{l}=\left(w_{4 l}, w_{4 l+1}, w_{4 l+2}, w_{4 l+3}\right) \in \mathcal{S}$ for $0 \leq l \leq 10$.

Encryption and decryption. Messages are divided in blocks of 128 bits each. Each block belongs to \mathcal{S}. Given a key $k \in \mathcal{K}$, a block is encrypted by means of the encryption function $\varepsilon_{k}: \mathcal{S} \rightarrow \mathcal{S}$ defined by

$$
\varepsilon_{k}=\tau_{k_{10}} \rho \sigma \tau_{k_{9}} \mu \rho \sigma \tau_{k_{8}} \mu \rho \sigma \tau_{k_{7}} \mu \rho \sigma \tau_{k_{6}} \mu \rho \sigma \tau_{k_{5}} \mu \rho \sigma \tau_{k_{4}} \mu \rho \sigma \tau_{k_{3}} \mu \rho \sigma \tau_{k_{2}} \mu \rho \sigma \tau_{k_{1}} \mu \rho \sigma \tau_{k_{0}}
$$

(nine μ 's, ten ρ^{\prime} 's, ten σ 's, and eleven τ 's; composition is from right to left). The corresponding decryption function $\delta_{k}=\varepsilon_{k}^{-1}$ is given by

$$
\begin{aligned}
& \delta_{k}=\tau_{k_{0}} \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{1}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{2}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{3}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{4}\right)} \nu \rho^{-1} \sigma^{-1} \circ \\
& \circ \tau_{\nu\left(k_{5}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{6}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{7}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{8}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{9}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{k_{10}} .
\end{aligned}
$$

2. DH and RSA and ElGamal signatures

In this section we briefly discuss an elementary number theoretic fact. After this we treat three well known applications of it in cryptography: the Diffie-Helman key exchange protocol, the Rivest-ShamirAdleman public key cryptosystem and the ElGamal digital signatures.

Let $N \neq 0$ be an integer. The group of all units modulo N, denoted as $(\mathbb{Z} / N \mathbb{Z})^{*}$, consists by definition of all classes $a \bmod N=a+N \mathbb{Z}$ which are units modulo N. This means that $b \bmod N$ exists such that

$$
(a \bmod N) \cdot(b \bmod N)=1 \bmod N .
$$

Such $b \bmod N$ exists precisely when $\operatorname{gcd}(a, N)=1$. Namely, the condition of being a unit can be written as the existence of integers b, c satisfying

$$
b a+c N=1,
$$

and the extended Euclidean algorithm shows that these exist (and are easily found!) precisely when $\operatorname{gcd}(a, N)=1$.

The number of elements in the group $(\mathbb{Z} / N \mathbb{Z})^{*}$ is denoted by $\varphi(N)$. The map φ, which assigns to every integer $\neq 0$ a positive integer, is called the Euler- φ-function or sometimes the Euler-totient-function.

In any finite group G it holds that if $n=\# G$ and $g \in G$, then g^{n} equals the unit element of G. A proof of this assertion can be found in essentially every introductory text on the theory of groups. In particular, for all $a \bmod N \in(\mathbb{Z} / N \mathbb{Z})^{*}$ one has

$$
a^{\varphi(N)} \equiv 1 \bmod N .
$$

A proof for this, using the commutativity of multiplication in $(\mathbb{Z} / N \mathbb{Z})^{*}$, runs as follows. Write P for the product of all elements in $(\mathbb{Z} / N \mathbb{Z})^{*}$. Then also P is an element of this group. Now

$$
\begin{aligned}
P & =\prod_{b \bmod N \in(\mathbb{Z} / N \mathbb{Z})^{*}}(b \bmod N) \\
& =\prod_{b \bmod N \in(\mathbb{Z} / N \mathbb{Z})^{*}}(a b \bmod N)=\left(a^{\varphi(N)} \bmod N\right) \cdot P,
\end{aligned}
$$

since multiplication by $a \bmod N$ is a bijection on the group $(\mathbb{Z} / N \mathbb{Z})^{*}$. Multiplying by the inverse of P then proves the assertion.

We briefly consider two special cases.
If $N=p$ is a prime number, then $\varphi(N)=N-1$. Incidentally, the converse holds as well: is $\varphi(N)=N-1$, then N is prime. Namely, since $\varphi(1)=1$, the condition implies $N \geq 2$. Therefore $0 \bmod N$ is not a unit modulo N, and hence all other $a \bmod N$ have to be units. This means $\operatorname{gcd}(a, N)=1$ for all a such that $1 \leq a \leq N-1$, which shows that N is prime.

For a prime number p it turns out that

$$
a^{p-1} \equiv 1 \bmod p
$$

whenever a is not divisible by p. This is the celebrated "Fermat's little theorem".

For $N=p q$ with p and q two distinct prime numbers, one has $\varphi(p q)=$ $(p-1)(q-1)$. Namely, the a with $1 \leq a \leq p q$ which do not satisfy $\operatorname{gcd}(a, p q)=1$, are

$$
p, 2 p, \ldots \ldots, q p \quad \text { and } \quad q, 2 q, \ldots \ldots, p q .
$$

These are $q+p-1$ numbers, hence $\varphi(p q)=p q-p-q+1=(p-1)(q-1)$.
So for this case

$$
a^{(p-1)(q-1)} \equiv 1 \bmod p q
$$

for all a satisfying $\operatorname{gcd}(a, p q)=1$.
Every element $a \bmod N$ in $(\mathbb{Z} / N \mathbb{Z})^{*}$ has an order; this is (a well known definition from group theory) the smallest integer $d>0$ such that $a^{d} \equiv 1 \bmod N$. The following properties hold.

Lemma 2.1. The order of elements $a \bmod N, b \bmod N \in(\mathbb{Z} / N \mathbb{Z})^{*}$ satisfies
(1) $\operatorname{order}(a \bmod N)$ divides $\varphi(N)$;
(2) if $a^{m} \equiv 1 \bmod N$, then m is a multiple of $\operatorname{order}(a \bmod N)$;
(3) if $\operatorname{order}(a \bmod N)=d$ and $\operatorname{order}(b \bmod N)=e$ with $\operatorname{gcd}(d, e)=1$, then $\operatorname{order}(a b \bmod N)=d e$;
(4) for p prime and $d>0$, the group $(\mathbb{Z} / p \mathbb{Z})^{*}$ has at most d elements of order dividing d.

Proof. (1.) Write $d:=\operatorname{order}(a \bmod N)$ and take $e:=\operatorname{gcd}(d, \varphi(N))$. Then $e=x d+y \varphi(N)$ for certain integers x, y, hence since $a^{d} \equiv 1 \bmod$ N and also $a^{\varphi(N)} \equiv 1 \bmod N$, it follows that

$$
a^{e} \equiv 1 \bmod N
$$

Now $e>0$ and $e \mid d$ and d is the smallest integer such that $a^{d} \equiv 1 \bmod$ N, hence $d=e$. Since $e \mid \varphi(N)$, one concludes $d \mid \varphi(N)$.
(2.) This is the same argument as given in (1.), with the role of $\varphi(N)$ replaced by m.
(3.) Put $c:=\operatorname{order}(a b \bmod N)$. Since $(a b)^{d e} \bmod N=1 \bmod N$, (2.) implies $c \mid d e$. But $(a b)^{c}=a^{c} b^{c}$, hence $b^{c} \bmod N$ is the inverse of $a^{c} \bmod$ N. In particular,

$$
\operatorname{order}\left(a^{c} \bmod N\right)=\operatorname{order}\left(b^{c} \bmod N\right) .
$$

By (2.), this order is a divisor of both d and e, because $a^{c d} \equiv 1 \bmod N$ and $b^{c e} \equiv 1 \bmod N$. Since $\operatorname{gcd}(d, e)=1$, this order equals 1. In other words,

$$
a^{c} \bmod N=1 \bmod N=b^{c} \bmod N .
$$

Now (2.) implies $d \mid c$ and $e \mid c$, and since $\operatorname{gcd}(d, e)=1$ this implies $d e \mid c$. We already saw that $c \mid d e$, so $c=d e$ follows.
(4.) The elements of order dividing d are zeros (in $\left.(\mathbb{Z} / p \mathbb{Z})^{*}\right)$ of the polynomial $X^{d}-1$. If a_{1} up to a_{t} are pairwise distinct zeros of this polynomial in $(\mathbb{Z} / p \mathbb{Z})^{*}$, then write

$$
X^{d}-\overline{1}=\left(X-a_{1}\right) \cdot \ldots \cdot\left(X-a_{t}\right) Q
$$

for some polynomial Q with coefficients in $\mathbb{Z} / p \mathbb{Z}$ (using mathematical induction with respect to t one can take out the factors $X-a_{j}$ one by one). Comparing degrees then shows $t \leq d$.

A legitimate question is, where exactly in the proof of (4.) as given above, one uses that p is prime. This happens when taking out the factors $X-a_{j}$. Consider as an example $N=8$. The elements in $(\mathbb{Z} / 8 \mathbb{Z})^{*}$ of order dividing 2 are $\overline{1}=1 \bmod 8, \overline{3}=3 \bmod 8, \overline{5}=5 \bmod 8$ and $\overline{7}=7 \bmod 8$. We start with the polynomial $X^{2}-\overline{1}$. It has all of the above elements as zero. One can factor $X^{2}-\overline{1}=(X-\overline{3})(X-\overline{5})$, but also $X^{2}-\overline{1}=(X-\overline{7})(X-\overline{1})$. However, after choosing one such factor, it is not true that all other elements of order dividing 2 are zeros of the remaining factor. This does hold in the case that $N=p$ is prime.

Lemma 2.1 has an important consequence:
Theorem 2.2. For p prime, the group $(\mathbb{Z} / p \mathbb{Z})^{*}$ contains an element $g \bmod p$ with $\operatorname{order}(g \bmod p)=p-1$.

Proof. Let $d \geq 1$ be the largest integer occurring as the order of some element of $(\mathbb{Z} / p \mathbb{Z})^{*}$. Part (1.) of Lemma 2.1 says that $d \mid \varphi(p)=$ $p-1$, so in particular $d \leq p-1$.

Consider any $a \bmod p \in(\mathbb{Z} / p \mathbb{Z})^{*}$ and put $e:=\operatorname{order}(a \bmod p)$. We claim that $e \mid d$. Since d occurs as order of an element, take $b \bmod p$ with $\operatorname{order}(b \bmod p)=d$. If e were not a divisor of d, then some prime number ℓ exists, such that e contains more factors ℓ than d, i.e., $e=\ell^{m} e_{1}$ and $d=\ell^{n} d_{1}$ for integers d_{1}, e_{1}, m, n with $m>n \geq 0$ and d_{1} not divisible by ℓ. Since $e=\operatorname{order}(a \bmod p)$, it follows that $a^{e_{1}} \bmod p$ has order ℓ^{m}. Similarly $b^{\ell^{n}} \bmod p$ has order $d_{1} . \operatorname{But} \operatorname{gcd}\left(\ell^{m}, d_{1}\right)=1$, hence part (3.) of Lemma 2.1 implies that

$$
\operatorname{order}\left(a^{e_{1}} b^{\ell^{n}} \bmod p\right)=\ell^{m} d_{1}>\ell^{n} d_{1}=d
$$

contradicting the definition of d.
We conclude that every element of $(\mathbb{Z} / p \mathbb{Z})^{*}$ has an order dividing d, and therefore part (4.) of Lemma 2.1 shows $p-1 \leq d$. Since we already know the reverse inequality, $p-1=d$ follows. This is precisely what we wanted to prove.

Definition 2.3. For p prime, any $g \bmod p \in(\mathbb{Z} / p \mathbb{Z})^{*}$ with order $(g \bmod p)=p-1$ is called a primitive root modulo p.

Theorem 2.2 asserts that primitive roots modulo p exist, for every prime p. The presented proof is a typical example of
a nonconstructive existence proof: it does not provide an efficient algorithm for finding such a primitive root. Various proofs of the same theorem, all nonconstructive, may be found on the site http://www.math.uconn.edu//kconrad/blurbs/grouptheory/cyclicmodp.pdf, by the American mathematician Keith Conrad.

2.4. Discrete logarithms.

Given a prime p and a primitive root $g \bmod p \in(\mathbb{Z} / p \mathbb{Z})^{*}$, we know that for $0 \leq i<j<p-1$ the powers $g^{i} \bmod p$ and $g^{j} \bmod p$ are distinct: namely, multiplication by the inverse of $g^{i} \bmod p$ yields $1 \bmod p$ and $g^{j-i} \bmod p$, which differ since $0<j-i<p-1=\operatorname{order}(g \bmod p)$. In particular this shows that $p-1$ distinct powers of $g \bmod p$ exist. Since $(\mathbb{Z} / p \mathbb{Z})^{*}$ contains precisely $p-1$ elements, one concludes that every $a \bmod p \in(\mathbb{Z} / p \mathbb{Z})^{*}$ can be written as

$$
a \bmod p=g^{m} \bmod p,
$$

for a unique m with $0 \leq m<p-1$. This m is called the discrete logarithm of $a \bmod p($ with respect to $g \bmod p)$.

We now sketch a method to obtain some information about this discrete logarithm of $a \bmod p$ for a given primitive root $g \bmod p$. First observe that for given integers k, m one has

$$
\begin{gathered}
g^{k} \bmod p=g^{m} \bmod p \\
\Leftrightarrow \\
g^{|k-m|} \bmod p=1 \bmod p \\
\Leftrightarrow \\
p-1 \mid k-m \\
\Leftrightarrow \\
k \equiv m \bmod (p-1) .
\end{gathered}
$$

(Here Lemma 2.1 is used to show the middle equivalence.) So, once any k is found such that $g^{k} \bmod p=a \bmod p$, then the discrete logarithm of $a \bmod p$ is obtained as the remainder of the division of k by $(p-1)$.

We assume from now on that p is odd (the case $p=2$ is uninteresting). This implies that $(p-1) / 2$ is a positive integer $<p-1$, hence

$$
\bar{a}:=g^{(p-1) / 2} \bmod p
$$

satisfies $\bar{a} \neq 1 \bmod p$ and $\bar{a}^{2}=1 \bmod p$. Part (4) of Lemma 2.1 then implies $\bar{a}=-1 \bmod p$. Conclusion:

$$
g^{(p-1) / 2} \bmod p=\overline{-1}
$$

We call $a \bmod p$ a square modulo p if $b \bmod p$ exists with $b^{2} \bmod p=$ $a \bmod p$.

Lemma 2.5. a $\bmod p \in(\mathbb{Z} / p \mathbb{Z})^{*}$ is a square modulo p if and only if $a^{(p-1) / 2}=1 \bmod p$.

Proof. \Rightarrow : Suppose $a \bmod p=b^{2} \bmod p$. Then using Fermat's little theorem $a^{(p-1) / 2} \bmod p=b^{p-1} \bmod p=1 \bmod p$. \Leftarrow : Suppose $a^{(p-1) / 2} \bmod p=\overline{1}$. Write $a \bmod p=g^{m} \bmod p$, then $g^{m(p-1) / 2} \bmod p=\overline{1}$. By Lemma 2.1 therefore $(p-1) \mid m(p-1) / 2$, so an integer k exists with $(p-1) k=m(p-1) / 2$, i.e., $m=2 k$. Hence $a \bmod p=g^{2 k} \bmod p$, which is a square modulo p.

The criterion given here yields a very efficient test to check whether some $a \bmod p$ is a square modulo p. Namely, $a^{(p-1) / 2} \bmod p$ can be calculated, by repeatedly squaring modulo p, in roughly $\log (p)$ steps. Each step here requires (approximately) $(\log (p))^{2}$ time units.

Conclusion: the last bit of the discrete logarithm m of $a \bmod p$ is easily determined: m is even when $a \bmod p$ is a square, otherwise m is odd. In fact this kind of information is obtained by using that the order $p-1$ of any primitive root modulo p is even. Writing $p-1=2^{e} n$ with n an integer, and $a \bmod p=g^{m} \bmod p$, it is even possible to determine $m \bmod 2^{e}$ efficiently. In the applications it is undesirable that such information is obtained so easily. To prevent it, one chooses the prime number p in such a way that

$$
p-1=\ell \cdot k
$$

with k a small integer and ℓ a large prime. Instead of a primitive root $g \bmod p$, one now takes

$$
\bar{h}=h \bmod p:=g^{k} \bmod p
$$

By construction order $(h \bmod p)=\ell$, and

$$
H:=\left\{\bar{h}, \bar{h}^{2}, \ldots, \bar{h}^{\ell-1}, \bar{h}^{\ell}=\overline{1}\right\}
$$

is a subgroup of $(\mathbb{Z} / p \mathbb{Z})^{*}$ consisting of precisely ℓ elements. Every $a \bmod p \in H$ can be written as \bar{h}^{m}. About such m, which is welldefined up to multiples of ℓ, it is in general much more difficult to obtain information.
2.6. Extracting square roots modulo p. In the subgroup H described at the end of the previous section, one has $a^{\ell} \equiv 1 \bmod p$ for all $a \bmod p \in H$. As a consequence, $a^{\ell+1} \equiv a \bmod p$, and since $\ell+1$ is even, $j:=(\ell+1) / 2$ is a positive integer. Hence $a^{j} \bmod p$ is defined, and its square is $a \bmod p$. So extracting square roots is very simple in H. A similar idea is used in the so-called Tonelli-Shanks algorithm. Given an odd prime p and a square $\bar{a}=a \bmod p \in(\mathbb{Z} / p \mathbb{Z})^{*}$ (in other words, by Lemma 2.5. $\left.\bar{a}^{(p-1) / 2}=\overline{1}\right)$, and moreover given $\bar{b}=b \bmod p \in(\mathbb{Z} / p \mathbb{Z})^{*}$ which is not a square (so, again by Lemma 2.5, $\bar{b}^{(p-1) / 2}=\overline{-1}$), this algorithm finds a square root of \bar{a} in the following way:
the Tonelli-Shanks algorithm

- Define positive integers s, q (with q odd) by

$$
p-1=q \cdot 2^{s} .
$$

- Put $\bar{r}:=\bar{a}^{(q+1) / 2}$ and $\bar{t}:=\bar{a}^{q}$, then

$$
\bar{r}^{2}=\bar{a}^{q+1}=\bar{t} \cdot \bar{a} .
$$

So if it were true that $\bar{t}=\overline{1}$, then a square root of \bar{a} is found, namely \bar{r}.

The desired equality $\bar{t}=\overline{1}$ can be rephrased as $\operatorname{order}(\bar{t})=$

1. For this reason we now study the order of \bar{t} in the group $(\mathbb{Z} / p \mathbb{Z})^{*}$ more closely. Fix a primitive root $\bar{g} \in(\mathbb{Z} / p \mathbb{Z})^{*}$; it exists by Theorem 2.2. Since \bar{a} is a square, an integer m exists such that $\bar{a}=\bar{g}^{2 m}$. It follows that

$$
\bar{t}^{2^{s-1}}=\bar{a}^{2^{s-1}}=\bar{g}^{m(p-1)}=\overline{1},
$$

so by Lemma 2.1 we conclude that $\operatorname{order}(\bar{t})$ divides 2^{s-1}. Therefore

$$
\operatorname{order}(\bar{t})=2^{i}
$$

with $0 \leq i \leq s-1$.
As discussed, if $i=0$ then $\bar{t}=\overline{1}$ and we have found a square root of \bar{a}. We may therefore assume $i>0$. The idea is to adjust \bar{t} and \bar{r} in such a way, that the identity $\bar{r}^{2}=\bar{a} \cdot \bar{t}$ remains valid, and moreover order of \bar{t} changes into a smaller power of 2 . This will be achieved by using $\bar{b} \in(\mathbb{Z} / p \mathbb{Z})^{*}$, the given non-square.

- We have

$$
\operatorname{order}\left(\bar{b}^{q}\right)=2^{s},
$$

since $\left(\bar{b}^{q}\right)^{2^{s}}=\bar{b}^{p-1}=\overline{1}$, and $\left(\bar{b}^{q}\right)^{2^{s-1}}=\bar{b}^{(p-1) / 2}=\overline{-1}$ (here it is used that \bar{b} is not a square!). Put $\bar{c}:=\bar{b}^{q}$. Using \bar{c} we will construct a square which has the same order as \bar{t}.

We know $\operatorname{order}(\bar{t})=2^{i}$ with $1 \leq i \leq s-1$, so $s-i \geq 1$. Consider the sequence

$$
\bar{c}, \bar{c}^{2}, \bar{c}^{4}, \ldots, \bar{c}^{2^{s-i}}
$$

Since \bar{c} has order 2^{s}, the order of \bar{c}^{2} equals 2^{s-1}, and that of \bar{c}^{4} is 2^{s-2}. Continuing like this one finds

$$
\operatorname{order}\left(\bar{c}^{2^{s-i}}\right)=2^{s-(s-i)}=2^{i} .
$$

So we found an element of the same order as \bar{t}. Moreover, it is a square, since $s-i \geq 1$ and therefore 2^{s-i} is even.

- A square root of $\bar{e}:=\bar{c}^{2 s-i}$ is $\bar{d}:=\bar{c}^{2 s-i-1}$. Multiplying both sides of $\bar{r}^{2}=\bar{a} \bar{t}$ by $\bar{d}^{2}=\bar{e}$ one obtains

$$
(\bar{r} \bar{d})^{2}=\bar{a} \cdot(\bar{t} \bar{e}) .
$$

Claim: the order of $\bar{t} \bar{e}$ is a power of 2 , strictly smaller than 2^{i}. This is seen as follows.

By construction both \bar{t} and \bar{e} have order 2^{i}, and $i \geq 1$. Raising \bar{t} and \bar{e} to the power 2^{i-1}, one obtains an element of order 2 in $(\mathbb{Z} / p \mathbb{Z})^{*}$. Conclusion: both $\bar{t}^{2^{i-1}}$ and $\bar{e}^{2^{i-1}}$ equal $\overline{-1}$. And therefore

$$
(\bar{t} \cdot \bar{e})^{2^{i-1}}=(\overline{-1})^{2}=\overline{1}
$$

Lemma 2.1 now implies that the order of $\bar{t} \cdot \bar{e}$ divides 2^{i-1}, which proves the claim.

- Repeating the steps above one finds a sequence of pairs (\bar{r}, \bar{t}), satisfying $\bar{r}^{2}=\bar{a} \cdot \bar{t}$ and with strictly decreasing powers of 2 as the order of \bar{t}. So after at most $s-1$ steps we have $\bar{t}=\overline{1}$, and then \bar{r} is a square root of \bar{a}.
The Tonelli-Shanks algorithm needs a non-square \bar{b} for extracting square roots of squares. Precisely half the elements of $(\mathbb{Z} / p \mathbb{Z})^{*}$ are nonsquares (namely, the odd powers of some primitive root). So in practice a non-square is quickly found: after n times randomly selecting an element from $(\mathbb{Z} / p \mathbb{Z})^{*}$, the probability that all n elements are squares equals 2^{-n}.
2.7. Diffie-Hellman key exchange. The Diffie-Hellman key exchange is a protocol providing two parties A and B via a public channel with a common secret key.

To this end, a prime number p is used such that $p-1=\ell k$ where ℓ is a large prime, as well as $\bar{h}:=g^{k} \bmod p$ with g a primitive root modulo p. The pair (p, \bar{h}) is made public. Observe that $\operatorname{order}(\bar{h})=\ell$. The common secret key for A and B which will be constructed, is a power of \bar{h} in the group $(\mathbb{Z} / p \mathbb{Z})^{*}$, as follows.

- As a first step, A should have a (secret) integer a, and A computes \bar{h}^{a}. Similarly B needs a secret b and determines \bar{h}^{b}. This \bar{h}^{a}, respectively \bar{h}^{b}, is now transmitted (via the public channel!) to the other party.
- Next, A computes $\left(\bar{h}^{b}\right)^{a}=\bar{h}^{a b}$, and B computes $\left(\bar{h}^{a}\right)^{b}=\bar{h}^{a b}$. This is their common secret key.
Since communication between A and B is done via a public channel, we may assume that a third party (adversary) E interested in the common secret key of A and B, also knows the pair (p, \bar{h}), as well as the values \bar{h}^{a} and \bar{h}^{b}. The security of the system therefore boils down to the question: can E efficiently determine $\bar{h}^{a b}$, or at least partial information about $\bar{h}^{a b}$, given $\left(p, \bar{h}, \bar{h}^{a}, \bar{h}^{b}\right)$?

A way for E to achieve this, is using discrete logarithms modulo p : first determine from \bar{h} and \bar{h}^{a} the value $a \bmod \ell$, then from \bar{h} and \bar{h}^{b} the value $b \bmod \ell$, and finally compute $\bar{h}^{a b}$ using these values. Since calculating discrete logarithms is in general difficult (i.e., no efficient
algorithm for it is known), it is not expected that along these lines the common secret key of A and B can be found within a reasonable time. No alternative way is known of efficiently finding from h and \bar{h}^{a} and \bar{h}^{b} the value $\bar{h}^{a b}$. The security of the Diffie-Hellman key exchange protocol is based on the assumption that no fast way exists to do this calculation without first determining a and b. If indeed we cannot construct such a method (i.e., if we are sufficiently ignorant!), we have obtained a very secure system...
2.8. Solving discrete logarithms. We have seen that the security of the Diffie-Hellman key exchange protocol depends on the assumption that computing discrete logarithms is a hard problem. In the following we present the Babystep-Giantstep-Algorithm due to Shanks that solves this problem in a finite cyclic group. Suppose you are given a finite cyclic group $G=\langle g\rangle$ (e.g. $G=(\mathbb{Z} / p \mathbb{Z})^{*}$ for a prime p) and an element $a \in G$. The goal is to find an integer $1 \leq m<\# G$ such that $a=g^{m}$. The idea behind the algorithm is that for a fixed positive integer b there are unique integers q and r with $m=b q+r$, where $0 \leq r<b$. Rewriting the equation $a=g^{m}$ to $a=g^{m}=g^{b q} g^{r}$ and multiplying both sides by $g^{-b q}$, gives us that finding m is the same as finding a pair (q, r) such that $a g^{-b q}=g^{r}$ holds.

In the first part of the algorithm, the babysteps, the elements g^{k} for $0 \leq k, b$ are computed. In the second part, the giantsteps, the elements $a g^{-b q}$ for $q=1,2, \ldots$ are computed until one of the giantsteps is equal to one of the babysteps. Such a collision is granted by the considerations above.

We now discuss what is a good choice for the integer b. The first observation is that for small b only a few babysteps are needed, while a lot of giantsteps have to be computed. For large b it is the other way around. The worst case scenario is given in the case when we have to compute $\frac{\# G}{b}$ giantsteps. Thus, in the worst case there are $\frac{\# G}{b}+b$ computations in G needed. This number attains a minimum for $b \approx \sqrt{\# G}$.
2.9. Rivest-Shamir-Adleman. The celebrated RSA (Rivest-Shamir-Adleman) public key cryptosystem has, as the name suggests, as an important feature that the key used for encryption, is public. Hence this is totally different from, e.g., the AES, where it is essential to keep the key secret. The advantage of a public key is obviously, that it is not necessary to agree on a common shared key (for example using Diffie-Hellman key exchange).

The safety of RSA relies on the assumption, that for general N and e no efficient algorithm exists for extracting e-th roots of integers modulo N. Taking here $N=p$ prime and $e=2$, we know from (2.6) above that such an algorithm does exist. Even simpler, again for $N=p$
prime, if one takes $e>0$ such that $\operatorname{gcd}(e, p-1)=1$, then an e-th root of $\bar{a} \in \mathbb{Z} / p \mathbb{Z}$ is easily constructed as follows: compute using the extended Euclidean algorithm $d>0$ with $e d \equiv 1 \bmod (p-1)$. Then \bar{a}^{d} is the desired root, because if $\bar{a}=\overline{0}$ then clearly $\overline{0}^{d}=\overline{0}$ works, and is $\bar{a} \neq \overline{0}$, then because p is prime, $\bar{a} \in(\mathbb{Z} / p \mathbb{Z})^{*}$ and

$$
\left(\bar{a}^{d}\right)^{e}=\bar{a} \cdot \bar{a}^{e d-1}=\bar{a} \cdot \overline{1}=\bar{a},
$$

since $e d-1$ is a multiple of $p-1$. So we found an e-th root of \bar{a}.
RSA does not use a prime number N, but instead takes N a product of two large distinct primes. The system works as follows.

- Take two large primes $p \neq q$ and calculate $N=p q$. The integer N is made public, but p and q are kept secret.
- One has $\varphi(N)=(p-1)(q-1)$ as we saw earlier in this chapter. The value $\varphi(N)$ is also kept secret. Next, take $e>1$ such that $\operatorname{gcd}(e, \varphi(N))=1$. This e is the public key.
- If anybody wants to send us a message $\bar{m} \in \mathbb{Z} / N \mathbb{Z}$, he/she computes \bar{m}^{e}. This is the encrypted version of the message, which is now sent to us.
- We know $\varphi(N)$ as well as e, and e was chosen a unit modulo $\varphi(N)$. We can therefore compute $d>0$ such that $d e \equiv 1 \bmod$ $\varphi(N)$. Then $\left(\bar{m}^{e}\right)^{d}$ equals the original message \bar{m}.
To see why this system works, we need to verify that $\bar{m}^{d e}=\bar{m}$ for every \bar{m}. In other words: all $m \in \mathbb{Z}$ have the property that N divides $m^{d e}-m$. Since $N=p q$ with p and q distinct primes, this is equivalent to the assertion that both p and q divide $m^{d e}-m$. Since $d e-1$ is a multiple of $\varphi(N)=(p-1)(q-1)$, it is a multiple of $p-1$ and $q-1$, too. The same argument used above for extracting e-th roots modulo p now finishes the reasoning.

It is clear why in this system $\varphi(N)$ needs to be secret: e is public, so knowing $\varphi(N)$ it is easy to find d with $d e \equiv 1 \bmod \varphi(N)$, and this compromises the system. If one knows the divisors p, q of N, one also knows $\varphi(N)$. Conversely, knowing $\varphi(N)$ implies knowing the sum $p+q$ which is $s:=N+1-\varphi(N)$. Since $N=p q$, now p and q are the two solutions of the equation

$$
x^{2}-s x+N=0,
$$

which are easy to find. Factoring N is therefore equally difficult as determining $\varphi(N)$. Since we cannot do this efficiently for very large N, this is not seen as a danger for the RSA system (NIST advises, at present, to take p, q so large that N is roughly of size 2^{2048}).

One could imagine that some efficient algorithm exists for extracting e-th roots modulo N, without using $\varphi(N)$ or the prime factorisation of N. Such an algorithm would make RSA unsafe. However, nobody appears to have any idea how such an algorithm should look like, so
one assumes RSA to be secure. Of course then $N=p q$ should be difficult to factor. For this reason one avoids primes p such that $p+m$, for some integer m with $|m|<2 \sqrt{p}$, factors into many small primes. As an example primes p with $p+1=2^{n}$ (these are called Mersenne primes) are unfit for RSA.

Although the description given here presents the basic idea of RSA, in practice additional issues are necessary. For example: if the encryption key is public, then without further knowledge it will be hard to verify that a received message was actually sent by the person asserting he/she sent it. Solutions for this kind of problems exist, and one of them is discussed in Section 2.10.
2.10. ElGamal digital signatures. Taher ElGamal obtained his PhD in 1984 supervised by Martin Hellman, one of the two persons we encountered describing the Diffie-Hellman protocol. He presented a method to equip messages m with a digital signature. It works as follows.

The messages m to be sent, are taken from some set M. This could be $\mathbb{Z} / N \mathbb{Z}$ (as in the case of RSA), or the set of 'states' when using AES, or (as with Diffie-Hellman) a group $(\mathbb{Z} / p \mathbb{Z})^{*}$. In the ElGamal system a hash function plays a role; this is a function

$$
H: M \longrightarrow \mathbb{Z}_{>0}
$$

Hash functions are often used in cryptography. For various practical applications hash functions have been constructed, with fancy names such as SHA-1 and SHA-2 and SHA-3 (SHA = Secure Hash Algorithm). SHA-3 was released by NIST quite recently: August 5th, 2015, see http://www.nist.gov/itl/csd/201508_sha3.cfm. A condition any hash function needs to satisfy, is that no efficient way is known which, on input some value $H(m)$, outputs $\tilde{m} \in M$ such that $H(\tilde{m})=H(m)$. We will assume that the function H is public; given $m \in M$, anyone can calculate the value $H(m)$.

Next, a large prime p and a primitive root $\bar{g} \in(\mathbb{Z} / p \mathbb{Z})^{*}$ are chosen. The person who wants to add a digital signature to the message m, owns (or chooses) a secret key x : it is an integer satisfying $1<x<p-1$. He/she now calculates $\bar{y}:=\bar{g}^{x}$. The triple

$$
(p, \bar{g}, \bar{y})
$$

is called the public key (of this person). This public key, as the name suggests, is made public.

A digital signature on the message m is now constructed as follows.

- Pick a random integer k such that $k \bmod (p-1)$ is a unit;
- Compute r with $1 \leq r \leq p-1$ such that $r \bmod p=\bar{g}^{k}$;
- Compute s with $0 \leq s<p-1$ such that
$s \bmod (p-1)=((H(m)-x r) \bmod (p-1)) \cdot(k \bmod (p-1))^{-1}$.
- If $s=0$, take a different random k, until $s \neq 0$.

The ElGamal digital signature on m is the pair (r, s).
The only way in which in this recipe $s=0$ can occur, is that r satisfies $x r \equiv H(m) \bmod (p-1)$. Now x is fixed, and satisfies $x \not \equiv$ $0 \bmod (p-1)$. As a consequence, multiplication by x as a $\operatorname{map} \mathbb{Z} /(p-$ 1) $\mathbb{Z} \rightarrow \mathbb{Z} /(p-1) \mathbb{Z}$ is not a constant map. In particular, $H(m) \bmod$ ($p-1$) can not be the only element of the image of this map (it is possible that it is not in the image at all!). This shows that a value r exists such that the corresponding $s \neq 0$. Note that in the algorithm constructing a digital signature, only integers r satisfying $r \bmod p=\bar{g}^{k}$ with $\operatorname{gcd}(k, p-1)=1$, are considered. These are exactly all primitive roots in $(\mathbb{Z} / p \mathbb{Z})^{*}$:

Lemma 2.11. Let p be an odd prime and $\bar{g} \in(\mathbb{Z} / p \mathbb{Z})^{*}$ a primitive root. For integers k one has

$$
\operatorname{order}\left(\bar{g}^{k}\right)=p-1 \Leftrightarrow \operatorname{gcd}(k, p-1)=1
$$

Consequently, there exist precisely $\varphi(p-1)$ primitive roots modulo p.
Proof. Put $d:=\operatorname{order}\left(\bar{g}^{k}\right)$. Then $(p-1) \mid d k$, so if $\operatorname{gcd}(k, p-1)=1$ then it follows that $(p-1) \mid d$. By Lemma $2.1 d \mid(p-1)$, hence $d=p-1$.

In case $\operatorname{gcd}(k, p-1)=e>1$, put $k=e k_{1}$ and $p-1=e e_{1}$. The equality

$$
\left(\bar{g}^{k}\right)^{e_{1}}=\bar{g}^{k_{1} e e_{1}}=\left(\bar{g}^{p-1}\right)^{k_{1}}=\overline{1}
$$

now shows that $d=\operatorname{order}\left(\bar{g}^{k}\right) \leq e_{1}<p-1$.
Since \bar{g}^{k} only depends on $k \bmod (p-1)$, the above argument shows that the primitive roots modulo p are in a one to one correspondence with the $k \bmod (p-1) \in(\mathbb{Z} /(p-1) \mathbb{Z})^{*}$. There exist $\varphi(p-1)$ of those.

We have that $\varphi(p-1)$ is large when p is a large prime, so the condition that $s \neq 0$, is in general not a problem. For example, one could put as an additional condition that the secret key x has to be a unit modulo $(p-1)$. This additional condition implies that a unique $r \bmod (p-1)$ exists with $x r \equiv H(m) \bmod (p-1)$. In case $\varphi(p-1)>1$ (which holds for primes $p>7$), the added condition guarantees we will find an $s \neq 0$. In practice none of this is a serious problem.

If a receiver obtains a message m equipped with a digital signature (r, s), he/she calculates $H(m)$ and $\bar{g}^{H(m)}$ (this is possible because \bar{g} and the Hash function H are public). The sender also made a public key \bar{y}; the receiver now computes

$$
\bar{y}^{r} \cdot\left(r^{s} \bmod p\right)
$$

and verifies that this equals $\bar{g}^{H(m)}$.

Since the digital signature needs to satisfy

$$
k s \equiv(H(m)-x r) \bmod (p-1),
$$

one has indeed

$$
\bar{g}^{H(m)}=\bar{g}^{k s} \bar{g}^{x r}=\left(r^{s} \bmod p\right) \cdot \bar{y}^{r},
$$

hence if the verification by the receiver did not result in equality, then either the message or the signature had been tampered with.

The usefulness and security of this system rely on two assumptions:
(1) It is not easy to find the secret key of the sender. In other words, given the public $\bar{y}=\bar{g}^{x}$ it is not easy to retrieve x.
(2) It is difficult to falsify a digital signature. i.e., even with \bar{y} and \bar{g} being public, it is not easy to construct a pair (r, s) (without using the secret key x) which will be regarded as a valid signature on a message \tilde{m}. It may sound plausible that this indeed holds, yet no formal argument is known why such an efficient construction can not exist.

3. Prime numbers

The given applications in cryptography require that we have a sufficient supply of large primes at our disposal. Here we discuss a practical algorithm to find such primes: the Miller-Rabin test. It is based on the fact that the equation

$$
x^{2}-\overline{1}=\overline{0}
$$

has only two solutions in $\mathbb{Z} / p \mathbb{Z}$ (for p an odd prime), namely $x=\overline{1}$ and $x=\overline{-1}$. A similar assertion was used in the proof of Theorem 2.2. A short proof: let $n \bmod p$ be a solution. Then $p \mid\left(n^{2}-1\right)=(n-1)(n+1)$. Since p is prime, it follows that $p \mid n-1$ or $p \mid n+1$, in other words, $n \equiv \pm 1 \bmod p$. (Alternative proof: by Lemma $2.1(\mathbb{Z} / p \mathbb{Z})^{*}$ contains at most, and hence exactly, 2 elements of order dividing 2.)

Let p be an odd prime and write, as when discussing the TonelliShanks algorithm, $p-1=q 2^{s}$ with $s>0$ and q odd. For an integer a such that $1 \leq a \leq p-1$ we have that order $\left(\bar{a}^{q}\right)$ divides 2^{s}, so this order equals 2^{i} with $0 \leq i \leq s$. If $s=0$, then $\bar{a}^{q}=\overline{1}$. If $s>0$, then $\bar{a}^{q 2^{2 i-1}}$ has order 2 , hence $\bar{a}^{q 2^{i-1}}=\overline{-1}$. In other words: the sequence

$$
\bar{a}^{q}, \bar{a}^{q 2}, \ldots, \bar{a}^{q^{2 s-1}}
$$

contains the element $\overline{-1}$.
This observation leads to a simple test: suppose we have an odd integer $n \in \mathbb{Z}_{\geq 3}$ and we want to test whether it is prime. The MillerRabin test attempts this as follows.

- Put $n-1=q 2^{s}$ with q odd and $s>0$. Repeat the following steps a number of times:
- Randomly choose $\bar{a} \neq \overline{0}$ in $\mathbb{Z} / n \mathbb{Z}$ and compute $\bar{b}:=\bar{a}^{q}$.
- If $\bar{b}=\overline{1}$, try another \bar{a}.
- If $\bar{b} \neq \overline{1}$, compute the sequence

$$
\bar{b}, b^{2}, \ldots, \bar{b}^{2^{s-1}}
$$

and check if it contains $\overline{-1}$. If not, then n is composite and the algorithm terminates. Otherwise, try another \bar{a}.

- If the test is passed for sufficiently many \bar{a} 's, then n is probably prime.
In case this algorithm outputs that n is composite, then indeed it is. Namely, it means that $\bar{a} \neq \overline{0}$ in $\mathbb{Z} / n \mathbb{Z}$ was found, with properties different from any element in $(\mathbb{Z} / p \mathbb{Z})^{*}$ for p prime, as we saw earlier.

If the algorithm outputs that n is probably prime, it means that every \bar{a} considered, satisfies either $\bar{a}^{q}=\overline{1}$ (in that case \bar{a} is a unit modulo n, namely one of order dividing q), or $\bar{a}^{q 2^{i}}=\overline{-1}$ for an i with $0 \leq i<s$. In this case \bar{a} is also a unit modulo n, now with even order. In short, the conclusion is that all used \bar{a} 's are in

$$
A:=\left\{\bar{a} \in(\mathbb{Z} / n \mathbb{Z})^{*} \mid \bar{a}^{q}=\overline{1} \text { or } \exists 0 \leq i<s: \bar{a}^{q 2^{i}}=\overline{-1}\right\}
$$

This set A satisfies:
Theorem 3.1. If the odd integer $n>1$ is composite, then

$$
\frac{\# A}{\varphi(n)} \leq \frac{1}{4}
$$

A proof of this is presented in a text by René Schoof: http://www.mat.uniroma2.it/~schoof/05rene.pdf. It uses a result we now prove using Theorem 2.2;

Lemma 3.2. Let p be an odd prime and $e>0$. Then $\varphi\left(p^{e}\right)=$ $p^{e-1}(p-1)$, and $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{*}$ contains an element of order $p^{e-1}(p-1)$.

Proof. By definition $\varphi\left(p^{e}\right)$ equals the number of integers n such that $1 \leq n \leq p^{e}$ and $\operatorname{gcd}\left(n, p^{e}\right)=1$, which means p does not divide n. So one finds p^{e} minus the number of $n \in\left\{1, \ldots, p^{e}\right\}$ that are multiples of p. Hence $\varphi\left(p^{e}\right)=p^{e}-p^{e-1}=p^{e-1}(p-1)$.

The application

$$
a+p^{e} \mathbb{Z} \mapsto a+p \mathbb{Z}
$$

defines a map

$$
f:\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{*} \longrightarrow(\mathbb{Z} / p \mathbb{Z})^{*}
$$

satisfying $f(\bar{a} \cdot \bar{b})=f(\bar{a}) f(\bar{b})$ for units \bar{a}, \bar{b}. This map is surjective, as an arbitrary $a+p \mathbb{Z}$ has preimage (e.g.) $a+p^{e} \mathbb{Z}$. Take a primitive root $g+p \mathbb{Z} \in(\mathbb{Z} / p \mathbb{Z})^{*}$ and put $\bar{g}:=g+p^{e} \mathbb{Z}$. Write $d:=\operatorname{order}(\bar{g})$. Since $\bar{g}^{d}=\overline{1}$, also $g^{d} \bmod p=f\left(\bar{g}^{d}\right)=f(\overline{1})=1 \bmod p$. Lemma 2.1 implies that d is a multiple of the order of $g \bmod p$, which is $p-1$. Therefore $d=(p-1) d_{1}$ for some $d_{1} \geq 1$.

Then the element $\bar{h}:=\bar{g}^{d_{1}}$ has order $p-1$ in the group $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{*}$. If we moreover find an element $\bar{j} \in\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{*}$ with $\operatorname{order}(\bar{j})=p^{e-1}$, then part (3) of Lemma 2.1, observing that $\operatorname{gcd}\left(p^{e-1}, p-1\right)=1$, shows that $\bar{h} \bar{j}$ is the desired element of order $\varphi\left(p^{e}\right)$ is.

Claim: $\bar{j}:=(1+p) \bmod p^{e}$ is in $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{*}$, and its order equals p^{e-1}.
Namely, from the binomial formula (and induction on e) one finds $(1+p)^{p^{e-1}} \equiv 1 \bmod p^{e}$. Therefore $(1+p) \bmod p^{e}$ is a unit, and its order divides p^{e-1}. Write this order as p^{i} with i satisfying $0 \leq i \leq e-1$. Then

$$
p^{e} \mid\left((1+p)^{p^{i}}-1\right) .
$$

For contradiction, if $i<e-1$, then also $i+2 \leq e$, and therefore

$$
(1+p)^{p^{i}} \equiv 1 \bmod p^{i+2}
$$

However, again from the binomial formula and induction to i, one has

$$
(1+p)^{p^{i}} \equiv\left(1+p^{i+1}\right) \bmod p^{i+2} .
$$

Combining the congruences yields $p^{i+1} \equiv 0 \bmod p^{i+2}$, a contradiction! So indeed \bar{j} has order p^{e-1}, completing the proof.

4. A factorisation method: Pollard $p-1$

Discussing RSA, we saw that a necessary condition for its security is, that no efficient algorithm is known which, on input of a composite integer n, outputs a divisor $m \mid n$ with $1<m<n$. This leads to the question, which algorithms have been found so far for this problem. The most successful algorithms to date (2015) are the "number field sieve" (two versions of it, the 'special' SNF, suited for special integers such as $2^{2^{m}}+1$ and many more, and the 'general' GNF, used for numbers with no specific additional form. A predecessor of the number field sieve, the so-called quadratic sieve, factored several large numbers as well. An other famous algorithm is the "elliptic curve method", ECM. Especially when close to a prime divisor p of n, many numbers $p+a$ occur which have only small prime factors, then ECM, a method proposed by Leiden mathematician H.W. Lenstra (we met him when discussing AES), turns out to be very efficient.

In this section we describe an algorithm which provided an important motivation for ECM. It was proposed by the English mathematician John Pollard, and it is called the $p-1$ method. The most important difference between Pollard $p-1$ and ECM, is that the first uses the group $(\mathbb{Z} / p \mathbb{Z})^{*}$ for some prime $p \mid n$, whereas ECM instead uses the so-called group of points over $\mathbb{Z} / p \mathbb{Z}$ of an elliptic curve. We will discuss elliptic curves in Section 5. The idea in Pollard $p-1$ is as follows.

Suppose $n>1$ is composite. If p is a prime divisor of n, then we obtain a surjective map

$$
\pi:(\mathbb{Z} / n \mathbb{Z})^{*} \longrightarrow(\mathbb{Z} / p \mathbb{Z})^{*}
$$

given as $\bar{a}=a+n \mathbb{Z} \mapsto a+p \mathbb{Z}$. The equality $\pi(\bar{a} \cdot \bar{b})=\pi(\bar{a}) \pi(\bar{b})$ holds. If e is some divisor of $p-1$, then $a+p \mathbb{Z}$ in $(\mathbb{Z} / p \mathbb{Z})^{*}$ exists satisfying $a^{e} \bmod p=1 \bmod p$, and therefore, for any multiple E of e, also $a^{E} \bmod p=1 \bmod p$. Elements $a \bmod p$ as discussed here, are easy to describe: if $g \bmod p$ is a primitive root modulo p, writing $p-1=d e$, then

$$
g^{d} \bmod p, g^{2 d} \bmod p, \ldots, g^{d(e-1)} \bmod p, 1 \bmod p
$$

are the desired classes $a \bmod p$.
Randomly picking a unit $a \bmod p$, the probability that it is one of the classes above, equals $e /(p-1)=1 / d$. We can do the same for other divisors e of $p-1$. Then, provided $p-1$ has many divisors, the probability that $a^{E} \bmod p=1 \bmod p$, with E a common multiple of several such e 's, is not too small. Of course we do not know the prime divisor p, and hence neither the suitable e 's. What can be done however, is guess a possible E. It should have many divisors in order to increase the probability that $a^{E} \equiv 1 \bmod p$, or equivalently, that p divides $a^{E}-1$. A reasonable choice is to take

$$
E:=\operatorname{lcm}(2,3,4,5, \ldots, B)
$$

for a not too small bound B. In Magma this is implemented as follows:

```
E:=1; B:=100;
for j in [2..B] do
    E:=LCM(E,j);
end for;
E;
```

Now randomly pick a (small) integer a, for example, a small prime. We do not know the desired prime factor p of n (yet), and thus neither do we know $a^{E} \bmod p$. But we can compute $a^{E} \bmod n$. Write $a^{E} \bmod$ $n=b \bmod n$. Our hope is that $a^{E} \bmod p=1 \bmod p$, i.e., $p \mid b-1$. If this were true, then p divides n as well as $b-1$, so $p \mid \operatorname{gcd}(n, b-1)$. This is precisely the way in which the Pollard $p-1$ algorithm attempts to find divisors of n. With E as above, it is implemented in Magma as follows:

```
pollard := function(n)
    R := quo<Integers()|n>;
    a := 2;
    for j in [1..100] do
        a := NextPrime(a);
        if (n mod a) eq 0 then
                return a;
```

```
        else
        b := (R!a)^E;
        g := GCD(n,b-1);
        if not (g eq 1) and not (g eq n) then
            return g;
        end if;
        end if;
        end for;
        return 0;
    end function;
pollard(10511111111111);
pollard(2*3^40+1);
```


5. Elliptic curves

The abbreviation ECC in cryptography stands for "Elliptic Curve Cryptography": cryptography using elliptic curves. Much has been written about this subject. A first and incomplete description is, that the role of $(\mathbb{Z} / p \mathbb{Z})^{*}$ in various protocols, may be replaced by the group $E(\mathbb{Z} / p \mathbb{Z})$ of points with coordinates in the integers modulo p, on an elliptic curve E.

Here we present a brief introduction to the theory of elliptic curves. We closely follow a part of the slides made by the American mathematician Joe Silverman in 2006 for a summer school in Wyoming on the subject. In his text he writes, as is common in algebra, \mathbb{F}_{p} for the field $\mathbb{Z} / p \mathbb{Z}$. If $q=p^{e}$ is a power of a prime p, then more generally \mathbb{F}_{q} denotes a field consisting of precisely q elements. For example, when discussing AES we encountered \mathbb{F}_{256}.

The complete text by Silverman can be found at www.math. brown.edu/ \sim jhs/Presentations/WyomingEllipticCurve.pdf; a small part of this text is found below, with some additional explanation.

An Introduction to the Theory of Elliptic Curves Joseph H. Silverman
 Brown University and NTRU Cryptosystems, Inc.

Summer School on
Computational Number Theory and
Applications to Cryptography
University of Wyoming
June 19 - July 7, 2006

0

Elliptic Curve
What is an Elliptic Curve?

- An elliptic curve is a curve that's also naturally a group.
- The group law is constructed geometrically.
- Elliptic curves have (almost) nothing to do with ellipses, so put ellipses and conic sections out of your thoughts.
- Elliptic curves appear in many diverse areas of mathematics, ranging from number theory to complex analysis, and from cryptography to mathematical physics.

Points on Elliptic Curves

- Elliptic curves can have points with coordinates in any field, such as $\mathbb{F}_{p}, \mathbb{Q}, \mathbb{R}$, or \mathbb{C}.
- Elliptic curves with points in \mathbb{F}_{p} are finite groups.
- Elliptic Curve Discrete Logarithm Problem (ECDLP) is the discrete logarithm problem for the group of points on an elliptic curve over a finite field.
- The best known algorithm to solve the ECDLP is exponential, which is why elliptic curve groups are used for cryptography.
- More precisely, the best known way to solve ECDLP for an elliptic curve over \mathbb{F}_{p} takes time $O(\sqrt{p})$.
- The goal of these talks is to tell you something about the theory of elliptic curves, with an emphasis on those aspects that are of interest in cryptography.

The Equation of an Elliptic Curve
An Elliptic Curve is a curve given by an equation of the form

$$
y^{2}=x^{3}+A x+B
$$

There is also a requirement that the discriminant

$$
\Delta=4 A^{3}+27 B^{2} \text { is nonzero. }
$$

Equivalently, the polynomial $x^{3}+A x+B$ has distinct roots. This ensures that the curve is nonsingular.
For reasons to be explained later, we also toss in an extra point, \mathcal{O}, that is "at infinity," so E is the set

$$
E=\left\{(x, y): y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\} .
$$

Amazing Fact: We can use geometry to make the points of an elliptic curve into a group. The next few slides illustrate how this is accomplished.

Explanation: let $s=(\alpha, \beta)$ be a point on E, so $\beta^{2}=\alpha^{3}+A \alpha+B$. A line containing s can be given as

$$
\ell=\{s+t r\}
$$

with $r \neq(0,0)$ a fixed direction and t a parameter. Write

$$
F(x, y)=x^{3}+A x+B-y^{2}
$$

The intersection of ℓ and E corresponds to the values t such that F ($s+$ $t r)=0$. The expression $F(s+t r)$ is a polynomial in the variable t, and its degree is at most 3 . Moreover, $t=0$ is a zero of this polynomial, since $s \in E$.

We call ℓ a tangent line to E in s, if the zero $t=0$ of $F(s+t r)$ has multiplicity at least 2. Equivalently, if the polynomial $F(s+t r)$ is divisible by t^{2}. Note that this definition of "tangent line" in the case that we work over the real numbers, agrees with our intuition for tangency. However, the definition does not only make sense over \mathbb{R} : it works equally well over an arbitrary field. To find such a tangent line, the direction $r=(\gamma, \delta)$ should be chosen in such a way that $t=0$ is a double zero of $F(s+t r)$. Since the coefficient of t in this polynomial equals

$$
\gamma \frac{\partial F}{\partial x}(s)+\delta \frac{\partial F}{\partial y}(s)=\gamma\left(3 \alpha^{2}+A\right)-2 \delta \beta
$$

we observe that in general, in a given point $s=(\alpha, \beta)$ of E one finds a unique tangent line ℓ, namely the line with as direction r an arbitrary multiple of $\left(2 \beta, 3 \alpha^{2}+A\right)$.

A point s is called a singular point of the curve, if it is on the curve and moreover there is more than one tangent line in s to the curve. The above calculation shows that $s=(\alpha, \beta)$ is a singular point of E, if it satisfies besides the equation of E also the system

$$
\left\{\begin{array}{r}
2 \beta=0 \\
3 \alpha^{2}+A=0
\end{array}\right.
$$

If $2 \neq 0$ holds in the field we consider, then a singular point on E is necessarily of the form $s=(\alpha, 0)$, with α a zero of $x^{3}+A x+B$ of multiplicity at least 2 . In particular this implies

$$
A=-3 \alpha^{2}
$$

and

$$
B=-\alpha^{3}-A \alpha=-\alpha^{3}+3 \alpha^{3}=2 \alpha^{3} .
$$

Combining the two equalities above, we get $4 A^{3}+27 B^{2}=0$. So if $4 A^{3}+27 B^{2} \neq 0$, then the curve contains no singular points, i.e., in every point on the curve one has a unique tangent line.

This tangent line assumption is used throughout Silverman's slides.

Adding Points on an Elliptic Curve

Start with two points P and Q on E.

Adding Points on an Elliptic Curve

Draw the line L through P and Q.

Adding Points on an Elliptic Curve

The line L intersects the cubic curve E in a third point. Call that third point R.

Adding Points on an Elliptic Curve

Draw the vertical line through R. It hits E in another point.

Adding Points on an Elliptic Curve

We define the sum of P and Q on E to be the reflected point. We denote it by $P \oplus Q$ or just $P+Q$.

Adding a Point To Itself on an Elliptic Curve

How do we add a point P to itself, since there are many different lines that go through P ?

Adding a Point To Itself on an Elliptic Curve

If we think of adding P to Q and let Q approach P, then the line L becomes the tangent line to E at P.

Adding a Point To Itself on an Elliptic Curve

Then we take the third intersection point R, reflect across the x-axis, and call the resulting point $P \oplus P$ or $2 P$.

Vertical Lines and the Extra Point "At Infinity"

Let $P \in E$. We denote the reflected point by $-P$.

Vertical Lines and the Extra Point "At Infinity"

Big Problem: The vertical line L through P and $-P$ does not intersect E in a third point! And we need a third point to define $P \oplus(-P)$.

Vertical Lines and the Extra Point "At Infinity"

Solution: Since there is no point in the plane that works, we create an extra point \mathcal{O} "at infinity."

Rule: \mathcal{O} is a point on every vertical line.

Properties of "Addition" on E
Theorem The addition law on E has the following properties:
(a) $P+\mathcal{O}=\mathcal{O}+P=P$
for all $P \in E$.
(b) $P+(-P)=\mathcal{O}$
for all $P \in E$.
(c) $P+(Q+R)=(P+Q)+R$ for all $P, Q, R \in E$.
(d) $P+Q=Q+P$ for all $P, Q \in E$.

In other words, the addition law + makes the points of E into a commutative group.

All of the group properties are trivial to check except for the associative law (c). The associative law can be verified by a lengthy computation using explicit formulas, or by using more advanced algebraic or analytic methods.

Adding points on an elliptic curve can (for example) be done using the Magma package. The example presented below considers the curve with equation $y^{2}=x^{3}+2 x+9$ over the field of rational numbers \mathbb{Q}. Two points on this curve are $P:=(0,3)$ and $P_{2}:=(4,9)$. Combinations of these points are found as follows.

Q:=Rationals();
E:=EllipticCurve([Q | 2, 9]);E;
P:=E! [0,3];P2:=E! [4,9];
2*P;
P-P2;
$6 * \mathrm{P}+7 * \mathrm{P} 2$;

The geometrically described rules for adding points on an elliptic curve will now be described with formulas.

Suppose that we want to add the points

$$
P_{1}=\left(x_{1}, y_{1}\right) \quad \text { and } \quad P_{2}=\left(x_{2}, y_{2}\right)
$$

on the elliptic curve

$$
E: y^{2}=x^{3}+A x+B .
$$

Let the line connecting P to Q be

$$
L: y=\lambda x+\nu
$$

Explicitly, the slope and y-intercept of L are given by

$$
\lambda=\left\{\begin{array}{ll}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { if } P_{1} \neq P_{2} \\
\frac{3 x_{1}^{2}+A}{2 y_{1}} & \text { if } P_{1}=P_{2}
\end{array} \quad \text { and } \quad \nu=y_{1}-\lambda x_{1}\right.
$$

Formulas for Addition on E (continued)
We find the intersection of

$$
E: y^{2}=x^{3}+A x+B \quad \text { and } \quad L: y=\lambda x+\nu
$$

by solving

$$
(\lambda x+\nu)^{2}=x^{3}+A x+B
$$

We already know that x_{1} and x_{2} are solutions, so we can find the third solution x_{3} by comparing the two sides of

$$
\begin{aligned}
x^{3} & +A x+B-(\lambda x+\nu)^{2} \\
& =\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \\
& =x^{3}-\left(x_{1}+x_{2}+x_{3}\right) x^{2}+\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right) x-x_{1} x_{2} x_{3}
\end{aligned}
$$

Equating the coefficients of x^{2}, for example, gives $-\lambda^{2}=-x_{1}-x_{2}-x_{3}$, and hence $x_{3}=\lambda^{2}-x_{1}-x_{2}$. Then we compute y_{3} using $y_{3}=\lambda x_{3}+\nu$, and finally

$$
P_{1}+P_{2}=\left(x_{3},-y_{3}\right) .
$$

Formulas for Addition on E (Summary)
Addition algorithm for $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$
on the elliptic curve $E: y^{2}=x^{3}+A x+B$

- If $P_{1} \neq P_{2}$ and $x_{1}=x_{2}$, then $P_{1}+P_{2}=\mathcal{O}$.
- If $P_{1}=P_{2}$ and $y_{1}=0$, then $P_{1}+P_{2}=2 P_{1}=\mathcal{O}$.
- If $P_{1} \neq P_{2}\left(\right.$ and $\left.x_{1} \neq x_{2}\right)$,

$$
\text { let } \lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { and } \nu=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
$$

- If $P_{1}=P_{2}\left(\right.$ and $\left.y_{1} \neq 0\right)$,

$$
\text { let } \lambda=\frac{3 x_{1}^{2}+A}{2 y_{1}} \text { and } \nu=\frac{-x^{3}+A x+2 B}{2 y} \text {. }
$$

Then

$$
P_{1}+P_{2}=\left(\lambda^{2}-x_{1}-x_{2},-\lambda^{3}+\lambda\left(x_{1}+x_{2}\right)-\nu\right)
$$

An Observation About the Addition Formulas

The addition formulas look complicated, but for example, if $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ are distinct points, then

$$
x\left(P_{1}+P_{2}\right)=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2}
$$

and if $P=(x, y)$ is any point, then

$$
x(2 P)=\frac{x^{4}-2 A x^{2}-8 B x+A^{2}}{4\left(x^{3}+A x+B\right)}
$$

Important Observation: If A and B are in a field K and if P_{1} and P_{2} have coordinates in K, then $P_{1}+P_{2}$ and $2 P_{1}$ also have coordinates in K.

The Group of Points on E with Coordinates in a Field K The elementary observation on the previous slide leads to the important result that points with coordinates in a particular field form a subgroup of the full set of points.

Theorem. (Poincaré, ≈ 1900) Let K be a field and suppose that an elliptic curve E is given by an equation of the form

$$
E: y^{2}=x^{3}+A x+B \quad \text { with } \quad A, B \in K
$$

Let $E(K)$ denote the set of points of E with coordinates in K,

$$
E(K)=\{(x, y) \in E: x, y \in K\} \cup\{\mathcal{O}\}
$$

Then $E(K)$ is a subgroup of the group of all points of E.

With Magma it is easy to compute in a group $E(\mathbb{Z} / p \mathbb{Z})$ for p a prime number:

```
p:=37;
Fp:=GF(p);
E:=EllipticCurve([ Fp | -5,8]);
P:=E![6,3]; Q:=E![10,12];
Order(P);
Order(Q);
RationalPoints(E);
#E;
```

In the given example all 45 points in $E\left(\mathbb{F}_{37}\right)$ turn out to be combinations of P and Q.

A Finite Field Example (continued)

Substituting in each possible value $x=0,1,2, \ldots, 36$ and checking if $x^{3}-5 x+8$ is a square modulo 37 , we find that $E\left(\mathbb{F}_{37}\right)$ consists of the following 45 points modulo 37 :

```
(1, \pm2), (5, \pm21), (6, \pm3), (8, \pm6), (9, \pm27), (10, \pm25),
    (11, \pm27), (12, \pm23), (16, \pm19), (17, \pm27), (19, \pm1), (20, \pm8),
    (21, \pm5), (22, \pm1), (26, \pm8), (28, \pm8), (30, \pm25), (31, \pm9),
        (33, \pm1), (34, \pm25), (35, \pm26), (36, \pm7), \mathcal{O}.
```

There are nine points of order dividing three, so as an abstract group,

$$
E\left(\mathbb{F}_{37}\right) \cong C_{3} \times C_{15}
$$

Theorem. Working over a finite field, the group of points $E\left(\mathbb{F}_{p}\right)$ is always either a cyclic group or the product of two cyclic groups.

Computing Large Multiples of a Point

To use the finite group $E\left(\mathbb{F}_{p}\right)$ for Diffie-Hellman, say, we need p to be quite large $\left(p>2^{160}\right)$ and we need to compute multiples

$$
m P=\underbrace{P+P+\cdots+P}_{m \text { times }} \in E\left(\mathbb{F}_{p}\right)
$$

for very large values of m.
We can compute $m P$ in $O(\log m)$ steps by the usual Double-and-Add Method. First write

$$
\begin{aligned}
& m=m_{0}+m_{1} \cdot 2+m_{2} \cdot 2^{2}+\cdots+m_{r} \cdot 2^{r} \\
& \text { with } m_{0}, \ldots, m_{r} \in\{0,1\} .
\end{aligned}
$$

Then $m P$ can be computed as

$$
m P=m_{0} P+m_{1} \cdot 2 P+m_{2} \cdot 2^{2} P+\cdots+m_{r} \cdot 2^{r} P
$$

where $2^{k} P=2 \cdot 2 \cdots 2 P$ requires only k doublings.

Computing Large Multiples of a Point (continued)

Thus on average, it takes approximately $\log _{2}(m)$ doublings and $\frac{1}{2} \log _{2}(m)$ additions to compute $m P$.

There is a simple way to reduce the computation time even further. Since it takes the same amount of time to subtract two point as it does to add two points, we can instead look at a "ternary expansion of m, which means writing

$$
\begin{array}{r}
m=m_{0}+m_{1} \cdot 2+m_{2} \cdot 2^{2}+\cdots+m_{r} \cdot 2^{r} \\
\quad \text { with } m_{0}, \ldots, m_{r} \in\{-1,0,1\} .
\end{array}
$$

On average, this can be done with approximately $\frac{2}{3}$ of the m_{i} 's equal to 0 , which reduces the average number of additions to $\frac{1}{3} \log _{2}(m)$.

What Does $E(\mathbb{R})$ Look Like?
We have seen a picture of an $E(\mathbb{R})$. It is also possible for $E(\mathbb{R})$ to have two connected components.

E

Analytically, $E(\mathbb{R})$ is isomorphic to the circle group S^{1} or to two copies of the circle group $S^{1} \times C_{2}$.

What Does $E\left(\mathbb{F}_{p}\right)$ Look Like?

The group $E\left(\mathbb{F}_{p}\right)$ is obviously a finite group. Indeed, it clearly has no more than $2 p+1$ points.
For each $x \in \mathbb{F}_{p}$, there is a " 50% chance" that the value of $f(x)=x^{3}+A x+B$ is a square in \mathbb{F}_{p}^{*}. And if $f(x)=y^{2}$ is a square, then we (usually) get two points $(x, \pm y)$ in $E\left(\mathbb{F}_{p}\right)$. Plus there's the point \mathcal{O}.
Thus we might expect $E\left(\mathbb{F}_{p}\right)$ to contain approximately

$$
\# E\left(\mathbb{F}_{p}\right) \approx \frac{1}{2} \cdot 2 \cdot p+1=p+1 \text { points }
$$

A famous theorem of Hasse makes this precise:
Theorem. (Hasse, 1922) Let E be an elliptic curve

$$
y^{2}=x^{3}+A x+B \quad \text { with } A, B \in \mathbb{F}_{p} .
$$

Then

$$
\left|\# E\left(\mathbb{F}_{p}\right)-(p+1)\right| \leq 2 \sqrt{p} .
$$

$$
\text { The Order of the Group } E\left(\mathbb{F}_{p}\right)
$$

The Frobenius Map is the function

$$
\tau_{p}: E\left(\overline{\mathbb{F}}_{p}\right) \longrightarrow E\left(\overline{\mathbb{F}}_{p}\right), \quad \tau_{p}(x, y)=\left(x^{p}, y^{p}\right)
$$

One can check that τ_{p} is a group homomorphism.
The quantity

$$
a_{p}=p+1-\# E\left(\mathbb{F}_{p}\right)
$$

is called the Trace of Frobinius, because one way to calculate it is to use the Frobenius map to get a linear transformation on a certain vector space $V_{\ell}(E)$. Then a_{p} is the trace of that linear transformation.
Hasse's Theorem says that

$$
\left|a_{p}\right| \leq 2 \sqrt{p}
$$

For cryptography, we need $E\left(\mathbb{F}_{p}\right)$ to contain a subgroup of large prime order. How does $\# E\left(\mathbb{F}_{p}\right)$ vary for different E ?

The Distribution of the Trace of Frobenius
There are approximately $2 p$ different elliptic curves defined over \mathbb{F}_{p}.
If the $a_{p}(E)$ values for different E were uniformly distributed in the interval from $-2 \sqrt{p}$ to $2 \sqrt{p}$ then we would expect each value to appear approximately $\frac{1}{2} \sqrt{p}$ times.
This is not quite true, but it is true that the values a_{p} between (say) $-\sqrt{p}$ and \sqrt{p} appear quite frequently. The precise statement says that the a_{p} values follow a Sato-Tate distribution:
Theorem. (Birch)
$\#\left\{E / \mathbb{F}_{p}: \alpha \leq a_{p}(E) \leq \beta\right\} \approx \frac{1}{\pi} \int_{\alpha}^{\beta} \sqrt{4 p-t^{2}} d t$.

Computing the Order of $E\left(\mathbb{F}_{p}\right)$
If p is small, we can compute $x^{3}+A x+B$ for each $p=0,1, \ldots, p-1$ and use quadratic reciprocity to check if it is a square modulo p. This takes time $O(p \log p)$.

Schoof found a deterministic polynomial-time algorithm that computes $E\left(\mathbb{F}_{p}\right)$ in time $O(\log p)^{6}$.
Elkies and Atkin made Schoof's algorithm more efficient (but probabilistic), so it is now called the

SEA Algorithm.

The details of SEA are somewhat complicated. Roughly, one studies the set of all maps of a fixed degree ℓ from E to other elliptic curves. These correspond to quotient curves E / Φ for finite subgroups $\Phi \subset E$ of order ℓ. One deduces information about a_{p} modulo ℓ, from which a_{p} can be reconstructed.

Elliptic Curve Discrete Logarithm Problem ECDLP

Let E be an elliptic curve defined over a finite field \mathbb{F}_{p}.

$$
E: y^{2}=x^{3}+A x+B \quad A, B \in \mathbb{F}_{p}
$$

Let S and T be points in $E\left(\mathbb{F}_{p}\right)$. Find an integer m so that

$$
T=m S
$$

Recall that the (smallest) integer m with this property is called the Discrete Logarithm (or Index) of T with respect to S and is denoted:

$$
m=\log _{S}(T)=\operatorname{ind}_{S}(T)
$$

Let n be the order of S in the group $E\left(\mathbb{F}_{p}\right)$. Then

$$
\log _{S}:(\text { Subgroup of } E \text { generated by } S) \longrightarrow \mathbb{Z} / n \mathbb{Z}
$$

is a group isomorphism, the inverse of $m \mapsto m S$.

How To Solve the ECDLP

Exhaustive Search Method

Compute $m_{1} S, m_{2} S, m_{3} S, \ldots$ for randomly chosen values m_{1}, m_{2}, m_{3} until you find a multiple with $m S=T$. Expected running time is $O(p)$, since $\# E\left(\mathbb{F}_{p}\right)=O(p)$.

Collision Search Method

Compute two lists for randomly chosen values m_{1}, m_{2}, \ldots

List 1: $m_{1} S, m_{2} S, m_{3} S, \ldots$
List 2: $T-m_{1} S, T-m_{2} S, T-m_{3} S \ldots$
until finding a collision

$$
m_{i} S=T-m_{j} S
$$

Expected running time is $O(\sqrt{p})$ by the birthday paradox.

An Introduction to the Theory of Elliptic Curves

How To Solve the ECDLP

Pollard's ρ Method

- The collision method has running time $O(\sqrt{p})$, but it takes about $O(\sqrt{p})$ space to store the two lists.
- Pollards ρ method for discrete logs achieves the same $O(\sqrt{p})$ running time while only requiring a very small amount of storage.
- The idea is to traverse a "random" path through the multiples $m S+n T$ until finding a collision. This path will consist of a loop with a tail attached (just like the letter $\rho!$!).
- It takes $O(\sqrt{p})$ steps to arrive on the loop part. Then we can detect a collision in $O(\sqrt{p})$ steps by storing only a small proportion of the visited points. We choose which points to store using a criterion that is independent of the underlying group law.

How Else Can DLP Be Solved?
Pollard's ρ method works for most discrete log problems.
For an abstract finite group G whose group law is given by a black box, one can prove that the fastest solution to the DLP has running time $O(\sqrt{\# G})$.
But for specific groups with known structure, there are often faster algorithms.

- For $\mathbb{Z} / N \mathbb{Z}$, the DLP is inversion modulo N. It takes $O(\log N)$ steps by the Euclidean algorithm.
- For \mathbb{R}^{*}, the DLP can be solved using the standard logarithm,

$$
\text { if } \beta=\alpha^{m} \text {, then } m=\log (\beta) / \log (\alpha) \text {. }
$$

- For \mathbb{F}_{p}^{*}, there is a subexponential algorithm called the Index Calculus that runs in (roughly)

$$
O\left(e^{c \sqrt[3]{\log p}}\right) \text { steps. }
$$

Does ECDLP Have a Faster Solution?
The principal reason that elliptic curve groups are used for cryptography is:

For general elliptic curves, the fastest known method to solve ECDLP is Pollard's ρ Method!!

This means that it is not currently feasible to solve ECDLP in $E\left(\mathbb{F}_{q}\right)$ if (say) $q>2^{160}$.

A DLP of equivalent difficulty in \mathbb{F}_{q}^{*} requires $q \approx 2^{1000}$. Similarly, ECDLP with $q \approx 2^{160}$ is approximately as hard as factoring a 1000 bit number.
Hence cryptographic constructions based on ECDLP have smaller keys, smaller message blocks, and may also be faster.

Solving ECDLP in Special Cases

For "most" elliptic curves, the best known solution to ECDLP has running time $O(\sqrt{p})$. But for certain special classes of curves, there are faster methods.
It is important to know which curves have fast ECDLP algorithms so that we can avoid using them.

Elliptic Curves $E\left(\mathbb{F}_{p}\right)$ With Exactly p Points

If $\# E\left(\mathbb{F}_{p}\right)=p$, then there is a " p-adic logarithm map" that gives an easily computed homomorphism

$$
\log _{p \text {-adic }}: E\left(\mathbb{F}_{p}\right) \longrightarrow \mathbb{Z} / p \mathbb{Z}
$$

It is easy to solve the discrete logarithm problem in $\mathbb{Z} / p \mathbb{Z}$, so if $\# E\left(\mathbb{F}_{p}\right)=p$, then we can solve ECDLP in time $O(\log p)$.
5.1. The Edwards form for elliptic curves. In 2007 the American mathematician Harold M. Edwards proposed to use a different equation instead of the equation for elliptic curves as given in the previous section. An advantage of this new form is, that under mild additional conditions the group law on the set of solutions to this equation, is given by a single formula rather than a case-by-case consideration. Immediately after Edwards's proposal others picked it up, for example Dan Bernstein (Chicago) and Tanja Lange (Eindhoven). Chapters 3-5 of the bachelor's thesis of Marion Dam (2012) provide a detailed discussion of the idea by Edwards, and its relation to elliptic curves. We briefly describe it here and refer to Dam's text for proofs.

Suppose K is a field. The circle group over K, denoted $C(K)$, is defined as

$$
C(K):=\left\{(x, y) \in K \times K ; x^{2}+y^{2}=1\right\} .
$$

This set is made into a group as follows: let $O:=(1,0) \in C(K)$. Given two points $P_{j}=\left(x_{j}, y_{j}\right) \in C(K)$, define

$$
P_{1}+P_{2}:=\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right) .
$$

It is not difficult to verify that this provides $C(K)$ with the structure of an abelian group, with unit element O and inversion $-(x, y)=(x,-y)$.

In the special case $K=\mathbb{R}$ the points (x, y) in $C(\mathbb{R})$ correspond to the points $x+y i$ on the unit circle in \mathbb{C}. The usual multiplication in this unit circle in this way yields the addition on $C(\mathbb{R})$ as defined here. This is the reason why in general $C(K)$ is called the circle group (over $K)$.

If $1+1 \neq 0$ in K, i.e., if $-1 \neq 1$ in K, then $P:=(0,1) \in C(K)$ satisfies $P+P=(-1,0)$ and $P+P+P=(0,-1)$ and $4 P=O$. So in this case $C(K)$ contains a point of order 4 , namely P.

The Edwards form can be regarded as a variation on the circle group. Namely, let $d \in K$. Define $C_{d}(K)$ as

$$
C_{d}(K):=\left\{(x, y) \in K \times K ; x^{2}+y^{2}=1+d x^{2} y^{2}\right\} .
$$

For $d=0$ this is the circle group. And for every d, the set $\{(\pm 1,0),(0, \pm 1)\}$ is in $C_{d}(K)$. We now try to make $C_{d}(K)$ into a group. Let $P_{j}=\left(x_{j}, y_{j}\right) \in C_{d}(K)$. Put

$$
P_{1}+P_{2}:=\left(\frac{x_{1} x_{2}-y_{1} y_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{x_{1} y_{2}+x_{2} y_{1}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

provided this is defined, i.e., the denominators are non-zero. A long but straightforward computation shows that if $P_{1}+P_{2}$ is defined, then it is an element of $C_{d}(K)$. Note that the special case $d=0$ agrees with the addition formula on the circle. In case $d \neq 0$ is not a square in K, it can be shown that the denominators appearing above are nonzero for all $P_{1}, P_{2} \in C_{d}(K)$. So in this case the addition is defined on all of $C_{d}(K)$. It turns out that this makes $C_{d}(K)$ into an abelian group. The inverse of a point $P=(x, y) \in C_{d}(K)$ is $-P:=(x,-y)$. Exactly as in the case of the circle group, $P:=(0,1) \in C_{d}(K)$ satisfies $P+P=(-1,0)$ and $P+P+P=(0,-1)$ and $4 P=O$. So (recall we assume $-1 \neq 1$ in K) the point P has order 4 in $C_{d}(K)$.

The bachelor's thesis of Marion Dam explains the relation between this Edwards form and elliptic curves. This starts from the observation that one should look for elliptic curves containing a point (over K) of order 4. Given such an elliptic curve E, Dam describes an explicit bijection between $E(K)$ and $C_{d}(K)$ for some $d \in K$. This transports the group structure on E to that on C_{d}. Vice versa, given $d \neq 0, \neq 1$, she describes an elliptic curve E such that $E(K)$ contains a point of order 4 , and a bijection $C_{d}(K) \rightarrow E(K)$ which is the inverse of the one above. This explains how the group law formula on C_{d} can be constructed, and why in fact it is a group law. Moreover, it shows what kind of groups can be obtained as $C_{d}(K)$: precisely all elliptic curve groups containing a point of order 4.

We finish these lecture notes with some lines of Magma code, illustrating the connection between the Edwards form and the standard way of representing elliptic curves.

```
q:=RandomPrime(15);
Fq:=GF(q);
P2<x,y,z>:=ProjectiveSpace(Fq, 2);
d:=Random(Fq);
Cd:=Curve(P2, z^2*(x^2+y^2)-z^4-d*x^2*y^2);
Pt:=Cd![1,0,1];
set:=Points(Cd);
a:=Cd![1,0,0]; b:=Cd![0,1,0];
E,f:=EllipticCurve(Cd,Pt);
P1:=Random(set); P2:=Random(set);
foo,fi:=IsInvertible(f);
fi(f(P1)+f(P2));
```

The following code first defines the Edwards curve C_{d} for a variable d, and constructs an elliptic curve E, a 'map' $f: C_{d} \rightarrow E$ and an 'inverse' fi $: E \rightarrow C_{d}$. Then two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ on C_{d} are constructed, in which x_{1}, x_{2} are two variables, and the y_{j} are taken in such a way that indeed $P_{1}, P_{2} \in C_{d}$. Finally, P_{1} and P_{2} are added by first sending them to E by means of the map f, then the images are added using the group structure of E, and finally the sum in E is sent back to C_{d} by means of the map f.

The calculation, which takes quite some time since apparently Magma has difficulty calculating the inverse of f, reveals that the formula for adding points on C_{d} equals the one obtained as described here.

```
Qd<d>:=FunctionField(Rationals());
P2<x,y,z>:=ProjectiveSpace(Qd, 2);
Cd:=Curve(P2, z^2*(x^2+y^2)-z^4-d*x^2*y^2);
Qdx1<x1>:=FunctionField(Qd);
R<Y>:=PolynomialRing(Qdx1);
K<y1>:=ext<Qdx1 | x1^2+Y^2-1-d*x1^2*Y^2>;
K2<x2>:=FunctionField(K);
S<T>:=PolynomialRing(K2);
L<y2>:=ext<K2 | x2^2+T^2-1-d*x2^2*T^2>;
Cd:=BaseChange(Cd, L);
Pt:=Cd![1,0,1];
E,f:=EllipticCurve(Cd,Pt);
P1:=Cd![x1,y1,1]; P2:=Cd![x2,y2,1];
foo,fi:=IsInvertible(f);
fi(f(P1)+f(P2));
```


6. Exercises on security

(1) In the AES, the S-Box uses a field consisting of 256 elements. In the same spirit, construct fields consisting of 4 and also of 8 elements.
(2) Given the map λ used in the AES, find a formula for $\lambda^{2}=\lambda \circ \lambda$ and show that λ^{4} equals the identity map.
(3) Given $m=x^{8}+x^{4}+x^{3}+x+1$, compute the inverse of $x^{2}+1 \bmod m$ in $\mathbb{F}_{2}[x] /(m)$.
(4) Compute the S-box image $\sigma(f)$ and the pre-image $\sigma^{-1}(f)$, for $f=x^{2}+1 \bmod m$.
(5) The integer $n=561$ has the property that it is composite. Yet, just as in Fermat's little theorem for prime numbers, it satisfies $a^{n-1} \equiv 1 \bmod n$ whenever a and n are coprime. Prove that $n=561$ indeed has the asserted properties.
(6) For each of the primes $p<20$, find a primitive root modulo p.
(7) If p is prime and g is a primitive root modulo p, what is the discrete logarithm of $-1 \bmod p$ with respect to g ?
(8) In this exercise we use that 2 is a primitive root modulo 29.
(a) Note that $2^{5} \equiv 3 \bmod 29$. What is the discrete \log of $3 \bmod 29$ w.r.t. 2?
(b) Now observe $2 \cdot 3 \cdot 5 \equiv 1 \bmod 29$, and deduce from this the discrete \log of $5 \bmod 29$ w.r.t. 2 .
(c) Use $7 \cdot 4$ to find the discrete \log of $7 \bmod 29$ w.r.t. 2.
(d) Find the discrete \log of $11 \bmod 29$ w.r.t. 2, and also of $13 \bmod 29=-16 \bmod 29$.
(9) Using the previous exercise, find the prime numbers $p<29$ such that $p \bmod 29$ is a square modulo 29 .
(10) Given that 2 is a square modulo 31 and 3 is not, use the Tonelli-Shanks algorithm to find a square root of 2 modulo 31.
(11) In the special cases $n=9, n=15$, and $n=21$, compute the cardinality of the set A mentioned in the discussion about Miller-Rabin.

What is this set A in the case that $n=p$ is an odd prime number?
(12) Lemma 3.2 shows that for p an odd prime and $e>0$, the group $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{*}$ is cyclic, i.e., it consists of the powers of one generator $g \bmod p^{e}$.
(a) Show that if a group is cyclic, then it contains at most 1 element of order 2 .
(b) Show that if $e \geq 3$, then $\left(\mathbb{Z} / 2^{e} \mathbb{Z}\right)^{*}$ contains more than one element of order 2, hence this group is not cyclic. And what happens for $e=2$ and for $e=1$?
(13) Here are two 'baby'-examples of a Pollard $p-1$ factorisation.
(a) Take $n=1001$ and $E=6$. What is $\operatorname{gcd}\left(n, 2^{E}-1\right)$?
(b) Now take $n=10001$ and $E=12$. Show that $\operatorname{gcd}\left(n, 2^{E}-\right.$ 1) $=1$, and that $\operatorname{gcd}\left(n, 3^{E}-1\right)$ produces a nontrivial factor of n.
(14) Let p be a prime satisfying $p \equiv 3 \bmod 4$. Take any $a \in \mathbb{F}_{p}$ with $a \neq 0$. Consider E over \mathbb{F}_{p} corresponding to the equation $y^{2}=x^{3}+a x$.
(a) Verify that E defines an elliptic curve over \mathbb{F}_{p}.
(b) Show that $(-1)^{(p-1) / 2}=-1$ and conclude that -1 is not a square modulo p.
(c) Write $f(x):=x^{3}+a x$. For $b \in \mathbb{F}_{p}$, show that either $f(b)=0$, or exactly one of $f(b), f(-b)$ is a nonzero square in \mathbb{F}_{p}.
(d) Conclude that $E\left(\mathbb{F}_{p}\right)$ is a group consisting of precisely $p+1$ elements.
(e) Now take $p=67$. How can you make sure that the group considered here, is generated by one element?
(15) Given a point $Q=(a, b)$ with $a=0$ or $b=0$ in an Edwards group $C_{d}(K)$, what is the formula describing 'translation by Q^{\prime} in $C_{d}(K)$?
(16) Suppose K is a field in which $1+1 \neq 0$, and $d \neq 0$ is an element of K which is not a square. As claimed in the lecture notes, these conditions ensure that the set $C_{d}(K)$ with the given addition formula is a group. Find all elements of order 2 in this group, and also all elements of order 4.

[^0]: ${ }^{1}$ Strictly speaking, not only numerals but also the letter X.

