Monolithic scintillation crystals coupled to photosensor arrays for Time-of-Flight Positron Emission Tomography

P. Dendooven^a, R. Vinke^a, S. Seifert^b, H.T. van Dam^b, F.J. Beekman^b, H. Löhner^a, D.R. Schaart^b

^aKVI, University of Groningen, dendooven@kvi.nl university of bRadiation Detection & Medical Imaging, Delft University of Technology

Time-of-Flight Positron Emission Tomography

Time-of-Flight Positron Emission Tomography (TOF-PET) allows

- better image
- shorter scan
- smaller radiation dose to patient

Detector components for fast timing

fast and bright crystals

	LYSO	LaBr ₃
rise time (ns)	~0.3	≤ 1
decay time (ns)	~40	~15
light yield (ph/MeV)	~25 000	~65 000
energy resolution* (%)	11	3
attenuation length* (mm)	12	22
photofraction*	0.34	0.14
* for 511 keV photons		

fast photonsensor arrays

Silicon PhotoMultiplier (SiPM) 4×4 arravs: Hamamatsu MPPC S11064-050P(X1) SensL SPMArray 3035G16

4×4 multi-anode PMT Hamamatsu H8711-03

Results: Coincidence Resolving Time (CRT)

Small crystals

- crystal: 3×3×5 mm³ • bare LaBr₃:Ce(5%) LYSO
- sensor: 3×3 mm² Hamamatsu SiPM (MPPC S10362-33-050c)

511 keV CRT (FWHM) LaBr₃:Ce(5%) 95 ps LYSO:Ce 138 ps

 world record for 511 keV with scintillator · limited by photon statistics

400 LaBr₃ 300 200 Counts 100 -600 -500 -400 -300 -200 -100 0 100 Time [ps] spectra shift 20 mm 20 mm as At=2Ax/c

S. Seifert et al., IEEE Trans, Nucl. Sci. (2011) accepted R. Schaat et al., Phys. Med. Biol. 55 (2010) N179 R.Vinke et al., 2009 IEEE Nucl. Sci. Symp. Conf. Rec. M06-2 S.Seifert et al., 2009 IEEE Nucl. Sci. Symp. Conf. Rec. J01-4

Monolithic crystals

scanner CRT ^(*) (ps)		
LaBr ₃ :Ce(5%)	205 ⁽¹⁾	
LYSO:Ce	380 ⁽²⁾	
commercial, L(Y)SO	≤ 600	

(1) 16.2×18×10 mm³ LaBr₃:5%Ce on SiPM array Hamamatsu MPPC S11064-050P(X1) CRT for central 4 sensors of array S. Seifert et al., IEEE NSS/MIC 2011

(2) 16.2×18×L mm³ (L=10, 15, 20) LYSO on Hamamatsu H8711-03 multi-anode PMT CRT is independent of crystal length L R. Vinke et al. IEEE NSS/MIC 2010 Conf. Rec. NM3-3

Monolithic scintillation crystals on photosensor arrays

scintillation photons 511 keV notosensor arra)

Supported by SenterNovem grant No. IS055019

Advantages compared to segmented crystals commonly used in PET scanners:

- depth-of-interaction can be determined
 - · smaller efficiency loss from inter-crystal dead space
 - · inter-crystal scatter is less of an issue
 - lower cost

Figure: Scintillation photons generated by the absorption of a 511 keV photon are detected by a photosensor array

Results: Thin monolithic crystals x, y resolution

20×20×12 mm3 LYSO:Ce crystal: sensor array: Hamamatsu 8711-03 multi-anode PMT front, 1 side (~1 mm Ø spot) calibration scans: algorithm: maximum likelihood

slight DOI dependence

Results: Thick monolithic crystals: x, y, DOI resolution

16.2×18×20 mm³ LYSO on Hamamatsu H8711-03 multi-anode PMT maximum likelihood position reconstruction

13.2×13.2×10 mm3 LYSO:Ce SensL SPMArray 3035G16 SiPM array front, different angles (~0.5 mm Ø spot) nearest neighbor

entry point is determined (DOI not relevant)

(*) Calculated from CRT between monolithic and reference detector by removing contribution from reference detector and multiplying by $\sqrt{2}$.

Results: Time walk correction

20×20×12 mm3 LYSO on Hamamatsu H8711-03 multi-anode PMT

40

0

-20

-40

0

2

4

Time walk versus DOI for center, middle and edge regions (see insert) of the monolithic scintillation crystal.

An event-by-event time walk correction completely removes the time walk.

DOI [mm]

R. Vinke, et al., Nucl. Instr. Meth. A 621, 595 (2010)

8

12

10

interaction position reconstruction: • poorer away from the sensor shows edge effects

Conclusions

- · SiPM photosensors allow world-record timing performance
- 3D interaction position in monolithic crystals can be determined excellent spatial resolution close to sensor edge effects
- time-walk across the crystal can be corrected
- next to do: PET imaging performance of monolithic scintillation crystals