Performing great and the purpose of performing better than others: On the recursiveness of the achievement goal adoption process

NICO W. VAN YPEREN*
AND LENNART J. RENKEMA

University of Groningen, The Netherlands

Abstract

The purpose of the present research is to complement and extend previous achievement goal research by emphasizing that great performance may serve as an antecedent of performance-approach goal adoption, that is, the wish to outperform others. A consistent finding across the three studies is, indeed, that great (perceived) performance and high performance expectancies are associated with the adoption of performance-approach goals. It is concluded that the process of goal adoption is a dynamic, recursive process in which performance attainment is most likely to operate as both an antecedent and a consequence of goal adoption. Copyright © 2007 John Wiley & Sons, Ltd.

The achievement goal approach has emerged as a pre-eminent approach for understanding how people define, approach, experience, and respond to achievement situations (e.g., in the workplace, on the sports field, or in the classroom). Initially, achievement goals were discussed and examined in terms of two major classes (e.g., Ames 1992; Dweck, 1986; Nicholls, 1984). Individuals holding task- or self-referenced mastery goals desire to gain task mastery and compare their current performance to their own previous performances, whereas individuals endorsing other-referenced performance goals compare their own performances to those by others.

Recognizing that the approach-avoidance distinction has been a hallmark of achievement motivation research. Elliot (e.g., Elliot, 1999; Elliot & McGregor, 2001; see also Pintrich, 2000) introduced the most sophisticated contemporary achievement goal model in which both the performance goal construct and the mastery goal construct were partitioned into separate approach and avoidance orientations. Approach goals are directed toward positive or desirable events, whereas avoidance goals are aimed at avoiding negative or undesirable events. Hence, Elliot and McGregor (2001) proposed a 2×2 conceptualization of achievement goals that includes each combination of the mastery-performance and approach-avoidance distinctions. On the basis of this taxonomy, Van Yperen (2003, 2006) defined a performance-approach goal as the purpose of performing better than others.

*Correspondence to: Dr Nico W. Van Yperen, University of Groningen, Department of Social and Organizational Psychology, Grote Kruisstraat 2/I, 9712 TS Groningen, The Netherlands. E-mail: N.van.Yperen@rug.nl

Received 10 June 2006
Accepted 16 December 2006
‘beating others’), whereas a performance-avoidance goal referred to the avoidance of performing worse than others (‘not losing to others’). Similarly, a mastery-approach goal was defined as the purpose of improving relative to one’s previous performances (‘beating yourself’), whereas a mastery-avoidance goal referred to the avoidance of deterioration relative to one’s own previous performances (‘not losing to yourself’).

The present research focuses on the link between achievement goals and actual performance. The extant achievement goal literature suggests that only performance-approach goals are positively related to the actual performance. For example, correlational research among college students (for a review, see Harackiewicz, Barron, Pintrich, Elliot, & Thrash, 2002) consistently demonstrates that performance-approach goals are the only personally adopted achievement goals that are positively related (around \(r = .20 \)) to actual performance (such as exam performance, semester Grade Point Average, and final grade), when initial performance was controlled for (such as high school academic performance or Scholastic Aptitude Test scores). Hence, achievement goal researchers tend to consider performance-approach goals as a determinant of actual performance, which has been supported by recent experimental research (Senko & Harackiewicz, 2005).

However, the finding that performance-approach goals predict better performance does not exclude the possibility that the reverse may be true as well. Most likely, the process of goal adoption is a dynamic, recursive process in which actual performance operates as both antecedent and consequence of goal adoption. The purpose of the present research is to complement and extend previous achievement goal research by suggesting that great performance is not only a consequence, but also a determinant of performance-approach goal adoption.

Great performance may promote challenge-seeking and strengthen the tendency to adopt approach goals, either performance or mastery oriented. However, performance-approach goals (‘beating others’) are realistic and attainable only for the great performers whereas mastery-approach goals (‘beating yourself’) are self-referenced, and accordingly, realistic and attainable for anyone, regardless of one’s own performance level. Hence, in Study 1, we tested the hypothesis that relative to the poor performers, the great performers are more likely to adopt performance-approach goals.

STUDY 1

Method

Participants

Undergraduates (\(N = 44, 27.3 \% \) male) from a university in the Netherlands participated for course credits. Their mean age was 20.2 years (\(SD = 3.39 \)).

Procedure

A machine-paced STROOP task was presented to the participants as a reliable and validated test that assesses ‘Stress resistance.’ Both versions (henceforth referred to as Version 1 and Version 2) of the task consisted of 48 trials that were presented in 40-second time intervals (the participants were ignorant of the number of trials). The trials were composed of four basic color words (blue, green, red, and yellow) centered against a black background. In random order, with the restriction that no identical stimuli would follow each other, each word was presented six times in its corresponding color, and six times in
a color that conflicted with its meaning. For example, BLUE appeared six times in blue, and two times in green, red, or yellow. Participants were instructed to hit—as quickly as possible—the ‘Y’ (‘YES’) key if the word appeared in the congruent color (50% of the trials), and the ‘N’ (‘NO’) key if the word did not appear in the congruent color.

After a practice session, the participants were informed that there were two versions of the test. Before they started with Version 1, a target goal of 28 correct hits was imposed on them. On the next screen, the participants had to type the target score they had to attain. After completion of Version 1, they received false feedback on their performance (32 or 24 correct hits), including the explicit information that they had or had not reached their goal (28 correct hits). Then they were reminded that they were going to work on Version 2, a parallel version of Version 1. They were asked to indicate the extent to which they endorsed each achievement goal in the 2×2 achievement goal framework for Version 2. After the manipulation check, the participants were carefully debriefed and thanked.

Measures

Manipulation check The participants were asked to indicate whether or not they had attained their goal. Those who incorrectly indicated that they had, or had not, attained their goal were excluded from the analysis ($n = 6$).

Achievement goal adoption On a 9-point Likert-type scale that ranged from (1) definitely, via (5) neutral, to (9) definitely not, the participants were asked to indicate the extent to which they found each achievement goal in the 2×2 achievement goal framework important in completing Version 2. These were: (1) to perform better than most others in your norm group (performance approach); (2) not to perform worse than the most others in your norm group (performance avoidance); (3) to perform better than your usual level (mastery approach); (4) not to perform worse than your usual level (mastery avoidance). A description of a norm group was provided on the same screen. This tailor-made norm group (i.e., same-sex others with the same age and with the same level of education) was designed on the basis of the participant’s demographic data collected at the beginning of the session. The correlations between the four achievement goals are presented in Table 1. Note that each goal is significantly related to the goals with which they share a conceptual dimension (mastery-performance or approach-avoidance; cf., Elliot & McGregor, 2001).

Results

A 2 (Perceived performance: poor vs. great) $\times 2$ (Sex: men vs. women) analysis of variance (ANOVA) was conducted with the extent to which they endorsed a performance-approach goal as the dependent variable.

<table>
<thead>
<tr>
<th>(PRIVATE) Goal:</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance-approach</td>
<td>.46**</td>
<td>.52***</td>
<td>.17</td>
<td>4.97</td>
<td>1.81</td>
</tr>
<tr>
<td>Performance-avoidance</td>
<td>.31</td>
<td>.50**</td>
<td></td>
<td>5.34</td>
<td>2.02</td>
</tr>
<tr>
<td>Mastery-approach</td>
<td></td>
<td>.46**</td>
<td></td>
<td>5.21</td>
<td>1.63</td>
</tr>
<tr>
<td>Mastery-avoidance</td>
<td></td>
<td></td>
<td></td>
<td>6.03</td>
<td>2.21</td>
</tr>
</tbody>
</table>

Note: $^*p < .05; \ ^{**}p < .01; \ ^{***}p < .001.$
variable. This analysis revealed the expected main effect of Perceived performance, $F(1,34) = 5.00$, $p = .03$, $\eta^2 = 0.13$. The great performers (i.e., the participants who received false positive feedback) indicated that they more strongly endorsed a performance-approach goal ($M_{\text{great}} = 5.45$, $SD = 1.76$) than the poor performers (i.e., the participants who were provided with false negative feedback; $M_{\text{poor}} = 4.44$, $SD = 1.75$). Unexpectedly, a similar effect was found with regard to the performance-avoidance goal, ($F(1,34) = 4.87$, $p = .03$, $\eta^2 = 0.12$; $M_{\text{great}} = 5.90$, $SD = 2.10$ vs. $M_{\text{poor}} = 4.72$, $SD = 1.77$). The main effects of Perceived performance on the adoption of mastery-approach goals ($F(1,34) = 0.01$, $p = .92$, $\eta^2 = 0.00$; $M_{\text{great}} = 5.30$, $SD = 1.81$ vs. $M_{\text{poor}} = 5.11$, $SD = 1.45$) and mastery-avoidance goals ($F(1,34) = 0.19$, $p = .67$, $\eta^2 = 0.01$; $M_{\text{great}} = 6.15$, $SD = 2.43$ vs. $M_{\text{poor}} = 5.89$, $SD = 1.98$) were not significant, neither were the main effects of Sex, and the interaction effects ($ps > .15$).

Additional within-subjects analyses indicated that the poor performers found mastery-avoidance goals more important than either performance-approach goals ($p = .02$) or performance-avoidance goals ($p = .01$), and mastery-approach goals were perceived as more important than performance-approach goals by these individuals ($p = .05$; all other $ps > .17$). Among the great performers, the only significant difference was mastery-approach goals versus mastery-avoidance goals: the latter were perceived as more important ($p = .05$; all other $ps > .23$). Thus, the reason that the great performers attached more importance to performance goals than the poor performers is not that the greater performers perceived performance goals as more important than mastery goals. Rather, the poor performers tended to attach less importance to performance goals than to mastery goals. These data suggest that the poor performers tended to downplay the importance of performance goals.

STUDY 2

The results of Study 1 demonstrate a stronger preference for performance goals among the individuals who received false positive feedback (‘the great performers’) than among the individuals who received false negative feedback (‘the poor performers’). This result supports the hypothesis that relative to the poor performers, the great performers are more likely to adopt performance-approach goals. However, relative to perceived poor performance, perceived great performance also led to the adoption of performance-avoidance goals. To examine the consistency of these results across methodologies, in Study 2, the participants were forced to indicate their dominant achievement goal (Van Yperen, 2003, 2006), that is, the participants were asked to adopt one out of the four goals in the 2×2 achievement goal framework (Elliot & McGregor, 2001). Furthermore, a limitation of Study 1 may be that the false feedback may have led participants to perceive the mastery goals as easier than the performance goals. For example, participants who believed they failed to achieve the target of 28 (which may have been perceived as a normative average) and allegedlly earned a 24, may have perceived a mastery goal (i.e., scoring at least a 24 or 25) on Version 2 as easier than scoring better or not worse than others (i.e., scoring at least 28). Hence, in Study 2, we related the individuals’ dominant achievement goals to their actual performance levels prior to goal adoption. Genuine feedback was not provided because feedback is inherently other-referenced, self-referenced, or task-referenced, which would interfere with the dependent variable: achievement goal adoption. Hence, relying on participants’ subjective assessment or feeling of how they performed on Version 1, we hypothesized that relative to the poor performers, the great performers are more likely to adopt performance-approach goals. That is, we tested whether individuals who adopted performance-approach goals performed better on Version 1 than individuals who adopted another goal in the 2×2 achievement goal framework.
Method

Participants

Undergraduates ($N = 105$, 52.4% male) from a university and several professional schools and institutes in the Netherlands were recruited and were given five euros (approximately six U.S. dollars) for their participation. Their mean age was 21.9 years ($SD = 3.3$). Sex differences were explored, but as in Study 1, the results could not be qualified by higher-order interactions with sex as an additional predictor variable.

Procedure

The procedure and materials that were utilized were developed by Van Yperen (2003). Participants were seated in a private room where a computer guided them through the experiment. They read that they were going to participate in a research project on ‘Verbal skills measurement’ and that we were interested in how users feel about the test. The participants were then informed that there were two versions of the test (henceforth referred to as Version 1 and Version 2), each consisting of three modules: Synonyms, Analogies, and Categories, and that they would be receiving feedback at the end of the session. In the module Synonyms, the participants were asked to type the number of the word that has the same meaning as the target word, for example, ‘provisions.’ In this example, the response options were (1) advertisement; (2) clairvoyance; (3) furniture; (4) garbage; (5) stock. In the module Analogies, the participants had to figure out how the first word related to the second word. Next, they had to find the word that had the same relationship to the third word. For example, for ‘wolf–sheep, cat–’ choices were ‘(1) hedgehog; (2) kitten; (3) mouse; (4) tiger; (5) dog.’ In the module Categories, the same six categories followed each pair of words. The participants had to type the number of the category that matched the pair of words. For example, for ‘airplane–traveling’ choices were ‘(1) identical; (2) opposite; (3) kind; (4) part; (5) cause; (6) means.’ Each module of Version 1 was introduced using three examples of items. A 40-second time limit was set for each module. A countdown was displayed at the bottom of the computer screen.

After completing Version 1, the participants were reminded that they were going to work on Version 2, a parallel version of Version 1 consisting of the same three modules. They were recommended to adopt one out of the four specific goals representing the 2×2 achievement goal framework. After indicating their dominant achievement goal, the participants were debriefed and thanked.

Measures

Achievement goal adoption The participants were recommended to adopt one out of the four specific goals representing the 2×2 achievement goal framework: ‘To perform better than the average total score in your norm group’ ($performance$-$approach$), ‘Not to perform worse than the average total score in your norm group’ ($performance$-$avoidance$), ‘To perform better than your total score in Version 1’ ($mastery$-$approach$), and ‘Not to perform worse than your total score in Version 1’ ($mastery$-$avoidance$). As in Study 1, a norm group was provided on the same screen. This approach to goal measurement has been used in prior research (e.g., Van Yperen, 2003, 2006).

Actual performance is the total score in the three modules of the verbal skills test developed for high school students by Van Dijk and Tellegen (1994). The three modules are Synonyms, Analogies, and
Categories. In the version used in the present study, each module consists of 12–15 items, increasing in difficulty (for details, see Van Yperen, 2003).

Results

The observed percentages of goal choice deviated from an equal division across the four goals, \(\chi^2(3, N = 105) = 40.79, \ p < .001 \). The mastery-approach goal was the dominant achievement goal for most of the participants (50.5%). Few participants opted for a mastery-avoidance goal (8.6%). Slightly more than 40% of the participants preferred a performance goal, either performance-approach (18.1%) or performance-avoidance (22.9%). There was no sex difference in goal choice, \(\chi^2(3, N = 105) = 6.59, \) n.s.

We hypothesized that relative to the poor performers, the great performers are more likely to adopt performance-approach goals. Empirical support for this hypothesis would be obtained when the individuals who chose performance-approach goals performed better on Version 1 of the Verbal Skills Test (i.e., before goal adoption) than their counterparts who endorsed another achievement goal. Hence, we conducted a 2 (performance vs. mastery) \(\times \) 2 (approach vs. avoidance) analysis of variance (ANOVA)\(^1\) with performance on Version 1 as the dependent variable, using the Type III sums-of-squares method for balanced and unbalanced models with no empty cells (e.g., Hays, 1994). Only the interaction effect was significant, \(F(1,101) = 7.96, \ p < .01, \eta^2 = 0.07 \) (main effects: \(F(1,101) = 0.77, \) n.s., and \(F(1,101) = 0.42, \) n.s., respectively). Follow-up analyses (LSD tests) indicated that the participants endorsing performance-approach goals performed better on Version 1 than the participants with either performance-avoidance goals or mastery-approach goals (\(ps < .05 \), see Figure 1), which largely supports our hypothesis that relative to the poor performers, the great performers on Version 1 are more likely to adopt performance-approach goals. Unexpectedly, the participants with mastery-avoidance goals also scored higher on Version 1 relative to their counterparts with either performance-avoidance goals or mastery-approach goals (\(ps < .05 \)). The difference between performance-approach and mastery-avoidance was not significant (\(p = .37 \)).

Because a majority (see above: 50.5% in the present sample) prefers a mastery-approach goal, the absolute number of individuals that adopted mastery-approach goals can be expected to be the highest among both great and poor performers. However, the present results (see Figure 1) suggest that among the great performers, a higher proportion prefers the performance-approach goal (and the mastery-avoidance goal) than among the poor performers. To explore this, great and poor performing groups were created on the basis of a median split, and next, cross-tabulated by goal preference. The marginally significant result, \(\chi^2(3, N = 105) = 7.15, \ p = .06 \), indicates that among the great performers, a higher proportion chose the performance-approach goal than among the poor performers (23.5 vs. 13.0%). The reversed pattern was observed with regard to the performance-avoidance goal: (15.7 vs. 29.6%). Similarly, among the great performers, a higher proportion preferred the mastery-avoidance goal than among the poor performers (13.7 vs. 3.7%). With regard to the mastery-approach goal, these percentages were 47.1% (great performers) and 53.7% (poor performers). Thus, in line with our hypothesis, relative to the poor performers, the great performers

\(^1\)For a convenient presentation of the results, an analyses of variance (ANOVA) rather than logistic regression analysis of nested categories has been conducted. In this latter analytic strategy, contrasts among categories (mastery vs. performance, approach vs. avoidance, each goal vs. the other three goals, respectively) are accomplished in a series of dichotomous outcome logistic regressions (Cohen, Cohen, West, & Aiken, 2003). We have chosen for a more straightforward analysis: a simple 2 \(\times \) 2 ANOVA. Strictly speaking, an ANOVA tests the link, that is, not the causal link, between the dependent (i.e., task performance) and independent variables (i.e., goal adoption). On the basis of theory, sequence of data collection, etc., one may speculate about the causal nature of the relationship. Because performance (i.e., completion of Version 1) was measured before achievement goal adoption, the performance-goal causal relationship is more likely than the reverse link.
were more likely to adopt performance-approach goals (and mastery-avoidance goals). In contrast, relative to the great performers, the poor performers were more likely to adopt performance-avoidance goals and mastery-approach goals.

STUDY 3

The results of Studies 1 and 2 suggest that causal links exist between individuals’ (perceived) performance levels and achievement goal adoption. A consistent result across both studies is that there is a relatively strong preference for performance-approach goals among the great performers. Because the ecological validity of laboratory studies among undergraduates may be a concern, Study 3 was conducted to examine the extent to which the link between performance and achievement goal adoption holds in a real world setting.

In Study 3, we relied on individual’s performance expectancy as predictor variable. The most influential source of individuals’ performance expectancies may be their actual performances, which may be particularly true in sport settings in which one typically receives unequivocal feedback on one’s performances. Positive performance feedback will heighten one’s performance expectancy, whereas negative feedback is likely to create self-doubt and a decrease in performance expectancy (cf., Bandura, 1986; Gist & Mitchell, 1992; Vroom, 1964). Thus, support for our hypothesis (i.e., relative to the poor performers, the great performers are more likely to adopt performance-approach goals) would be obtained when the individuals who adopt performance-approach goals are higher in performance expectancy than their counterparts who adopt another goal in the 2 × 2 achievement goal framework.
Method

Participants and Procedure

The sample consisted of 508 talented youth athletes (49.2% male) between the ages of 12 and 15 ($M = 13.4$, $SD = 1.14$) who attended a meeting organized by the NOC*NSF (Netherlands Olympic Committee * Dutch Sport Confederation), an umbrella organization for sports in the Netherlands (www.sport.nl). The participants represented not only a broad range of sports, primarily track and field (57.4%), but also archery, judo, swimming, volleyball, soccer, badminton, table tennis, karate, equestrian sports, rowing, and mountain biking. The participants expected an unspecified, sport-specific test and a training session under the supervision of (inter)national top coaches and top athletes. At the beginning of the day, all the participants were asked to complete a brief questionnaire about the sport-specific test that they expected to undergo. The questionnaires were distributed on the spot, filled out, and turned in straightaway. The response rate was 98%.

Measures

The introduction to the questionnaire read as follows: ‘One of the items today is a test in your own sport. The following questions refer to the test you are undergoing today.’

Performance expectancy was measured by two items: (1) Do you expect to perform well on the sport test? (2) Do you feel able to attain high scores on the sport test? The youngster’s responded to both items on a 5-point Likert-type scale of 1 (*not at all*) to 5 (*very much*). The two items ($r = .56$) were averaged to create an index for performance expectancy ($M = 3.32$, $SD = 0.88$, $\alpha = .72$).

Achievement goal adoption The participants were asked: ‘For the sport test you are going to do, which goal is most important to you?’: (1) to perform better than ‘the average’ other participant (*performance-approach*); (2) not to perform worse than ‘the average’ other participant (*performance-avoidance*); (3) to perform better than my own usual level (*mastery-approach*); (4) not to perform worse than my own usual level (*mastery-avoidance*).

Results

The observed percentages of goal choice deviated from an equal division across the four goals: $\chi^2(3, N = 508) = 519.67, p < .001$. The mastery-approach goal was clearly the most prevalent achievement goal (68.3%). Less preferred were the mastery-avoidance goal (15.2%), the performance-approach goal (11.8%), and the performance-avoidance goal (4.7%). There was no sex difference in goal choice: $\chi^2(3, N = 504) = 5.44$, n.s.

The same 2 (performance vs. mastery) × 2 (approach vs. avoidance) ANOVA as in Study 2 was executed, this time with performance expectancy as the dependent variable. Empirical support for our hypothesis (‘Relative to the poor performers, the great performers are more likely to adopt performance-approach goals’) would be obtained when the individuals who chose performance-approach goals were higher on performance expectancy than their counterparts who endorsed another achievement goal. The ANOVA revealed two main effects ($F(1,504) = 4.60, p < .05$, $\eta^2 = 0.01$, and $F(1,504) = 47.40, p < .001$, $\eta^2 = 0.09$, respectively) that were qualified by the interaction effect, $F(1,504) = 4.27, p < .05$, $\eta^2 = 0.01$. Follow-up analyses (LSD tests) indicated that the individuals...
holding performance-approach goals had higher performance expectancies than individuals who preferred another goal \((p < .001, \text{see Figure 2}) \). Again, these findings largely support our hypothesis that relative to the poor performers (i.e., individuals holding low performance expectancies), the great performers (i.e., individuals holding high performance expectancies) are more likely to adopt performance-approach goals. Furthermore, youngsters who preferred mastery-approach goals were higher in performance expectancy than their counterparts with either performance-avoidance goals \((p < .01) \) or mastery-avoidance goals \((p < .001) \). No interactions with Sex were observed.

GENERAL DISCUSSION

The present research focused on the link between achievement goals and actual performance. Previous correlational research among college students suggest that performance-approach goals determine actual performance (for a review, see Harackiewicz et al., 2002), a notion that received support from recent experimental research (Senko & Harackiewicz, 2005). An important contribution of the present research is that it emphasizes that actual performance may also serve as an antecedent of performance-approach goal adoption (Brophy, 2005; Van Yperen, 2003). The finding in Study 1 that perceived great performance also led to the adoption of performance-avoidance goals may reflect the tendency among the performance-oriented to shift from performance-approach goals to performance-avoidance goals and vice versa (Brophy, 2005; Molden & Dweck, 2000).

Consistent across methodology and setting, the present three studies suggest that (perceived) great performance rather than (perceived) poor performance leads to the adoption of performance-approach goals. This finding is in line with the extant achievement goal literature that shows that
performance-approach goals and performance attainment (or performance expectancy/ability) are positively related (e.g., Dweck, 1999; Elliot & Church, 1997; Harackiewicz et al., 2002). Important to note is that other achievement goal research (e.g., Elliot & Church, 1997) has demonstrated that perceptions of ability are also related to the adoption of mastery-approach goals. Our findings are not completely at odds with these previous results. Firstly, Study 2 showed that among both the great and the poor performers, most of the individuals opted for a mastery-approach goal simply because, overall, a great majority prefers this goal. However, the present findings demonstrate that among the great performers, a higher proportion prefers the performance-approach goal than among the poor performers. Secondly, Study 3 additionally showed a high performance expectancy among individuals who adopted approach goals, particularly performance-approach goals, but also mastery-approach goals. Thirdly, in Study 1, great perceived performance was associated with an equally strong preference for performance and mastery goals. The differences between the great and poor performers observed in Study 1 can be ascribed to the greater importance poor performers attached to mastery goals relative to performance goals. In other words, relative to the great performers, the poor performers may have devalued the importance of performance goals. Indeed, particularly in an evaluative context in which (1) similar achievement tasks are presented sequentially, and (2) unambiguous, specific, and objective feedback about one’s performance is anticipated, the poor performers cannot be expected to adopt performance goals (cf., Van Yperen, 1992). They just learned that they are apparently not very good in this particular task so that these people are likely to perceive performance goals, and performance-approach goals in particular, as unrealistic and unattainable. In contrast, self-referenced mastery-approach goals are realistic and attainable for anyone, including the poor performers.

A curious finding in Study 2 was that some good performers may be more likely to adopt mastery-avoidance goals. This most recently proffered form of regulation appears to be quite prevalent in achievement contexts, particularly in real-life settings (Van Yperen, 2006), more so than initially anticipated (Deshon & Gillespie, 2005; Elliot & McGregor, 2001). One might speculate that in Study 2, the great performers who adopted mastery-avoidance goals felt that their task performance was not under their control. Hence, they may have attributed their great performance to luck, and may have entered the subsequent performance period concerned about not being able to repeat the prior outcome. Such self-referenced standard is clear, precise, and both appropriate and attainable (Van Yperen, Elliot, & Anseel, 2007). Accordingly, not attaining a self-referenced standard is highly diagnostic, and can yield unequivocal negative feedback that people wish to avoid (i.e., they do not want to lose to themselves). Note that not attaining other-referenced standards leaves much more room for self-serving attributions and questions, because these standards are often vague and may be questioned as to their appropriateness or attainability (e.g., Who are these other persons? Why should I use them as a comparison standard? What did they do to become so good?).

A strength of the present research is the unambiguous, simple, and intuitively appealing conceptualization of achievement goals (Van Yperen, 2003, 2006). In a full 2×2 design, the purpose of each goal is conceptualized exclusively in terms of either performing better (approach goal) or performing not worse (avoidance goal) relative to either one’s own performance level (mastery goal) or others’ performance levels (performance goal). An important advantage of this operationalization of achievement goals is that the effects of people’s freely adopted dominant achievement goals can be compared more unequivocally with the effects of dominant achievement goals that are imposed on participants in experimental research (e.g., see Van Yperen, 2003). In methodological terms, in both cases, the individuals’ achievement goals are examined as between-subject factors. Accordingly, goal origin (personally adopted vs. assigned), operationalization (continuous vs. categorical), and method (correlational vs. comparing group means) are not confounded, allowing possible differences in results to be explained more unequivocally in terms of goal origin.
In our ‘achieving society’ (McClelland, 1961), we revere those who are the best at what they do. Given the importance of excellence and success in our society, typically defined in terms of an individual’s achievement relative to others, one might expect that people prefer goals that reflect the purpose of outperforming others, particularly when the task is high in relevance to the self (e.g., Tesser, Millar, & Moore, 1988). The present research (i.e., Studies 2 and 3), however, consistently demonstrates that for a majority, both men and women, the dominant achievement goal was a mastery-approach goal rather than a performance-approach goal (or an avoidance goal; cf. Van Yperen, 2006). This appeared to be the case for college students who had to complete a test with high-attainment value for this group (Study 2) as well as for talented young athletes who expected to undergo a sport-specific test (Study 3).

In summary, a consistent finding across the three studies is that great (perceived) performance and high performance expectancies are associated with the adoption of performance-approach goals. Together with the findings from other achievement goal research (e.g., Harackiewicz et al., 2002; Senko & Harackiewicz, 2005), these results suggest that the process of goal adoption is a dynamic, recursive process in which actual or perceived performance is most likely to operate as both an antecedent and a consequence of goal adoption. However, more experimental achievement goal research is apparently needed to examine the specific conditions under which high (perceived) performance may lead to the adoption of other achievement goals as well.

Mastery-approach goals are generally considered to be the ideal form of competence-based regulation (Pintrich, 2000), and may lead individuals to view the task as an attainable challenge, elicit feelings of excitement, and encourage cognitive and affective immersion in the activity (Elliot & Church, 1997; Elliot & McGregor, 2001). Therefore, those who are not among the great performers (the great majority) may be better off with mastery-approach goals which are assumed to facilitate task interest and performance improvement (e.g., Janssen & Van Yperen, 2004; Schmidt & Ford, 2003; Van Yperen & Duda, 1999; VandeWalle, Brown, Cron, & Slocum, 1999). Paradoxically, this will increase the attainability of performance-approach goals in the long term. This side effect may be fully appreciated since in many areas of life, including work and sport, excellence and success are often defined in terms of an individual’s achievement relative to others, as exemplified by prizes, titles, bonuses, and honorific awards.

REFERENCES

