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a b s t r a c t

This paper proposes algorithms to coordinate a formation of mobile agents when the agents are not able
to measure the relative positions of their neighbors, but only the distances to their respective neighbors.
In this sense, less information is available to agents than is normally assumed in formation stabilization
or station keeping problems. To control the shape of the formation, the solution advanced in the paper
involves subsets of non-neighbor agents cyclically localizing the relative positions of their respective
neighbor agents while these are held stationary, and then moving to reduce the value of a cost function
which is nonnegative and assumes the zero value precisely when the formation has correct distances. The
movement schedule is obtained by a novel vertex-coloring algorithm whose computation time is linear
in the number of agents when implemented on the graphs of minimally rigid formations. Since in some
formations, it may be that an agent is never allowed to be stationary (e.g. it is a fixed-wing aircraft), or
because formations may be required to move as a whole in a certain direction, the results are extended
to allow for cyclic localization of agents in this case. The tool used is the Cayley–Menger determinant.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, teams of sensor-equipped autonomous robotic
platforms have been utilized in a wide range of applications, such
as infrastructure security, environment and habitat monitoring,
industrial sensing, traffic control and so on Chong and Kumar
(2003). It has been demonstrated that, when coordinating
robotic agents to cooperatively execute a task, it is sometimes
advantageous to have them maneuvering in a formation (Leonard
et al., 2007). However, it is challenging to coordinate a formation
of mobile agents when each agent can only measure ranges
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(distances) to their neighbors, but not their neighbors’ relative
positions. Even though in most of the previous solutions to the
formation control problem in similar settings, control is secured
through maintenance of distances, a richer measurement set is
required than simply those distances (Cao, Morse, Yu, Anderson,
& Dasgupta, 2011; Krick, Broucke, & Francis, 2009; Olfati-Saber
& Murray, 2002; Yu, Anderson, Dasgupta, & Fidan, 2009). For
example, using the popular gradient-descent approach (Cao et al.,
2011; Krick et al., 2009) to implement the control law, the
corresponding agent has to know exactly in real time in which
directions (and at what distance) its neighbors lie.

To control the shape of a formation using range-only measure-
ments, we follow a Lyapunov function approach. As far as agents
are concerned, the key is for a particular agent to switch cyclically
between periods of (a) identification (localization of the positions
of other agents), (b) control, in which the agentmoves to a position
causing a decrease in the Lyapunov function, and (c) resting, i.e. re-
maining stationary while other agents engage in identification (lo-
calization) and control (motion to reduce the Lyapunov function).
A novel vertex-coloring algorithm (Diestel, 1997) can thus be de-
signed for any minimally rigid formation (Anderson, Yu, Fidan, &
Hendrickx, 2008) to obtain an efficient movement schedule.

In some applications, it may be that agents in a formation
are never allowed to be stationary, or that the formation itself
is supposed to acquire a certain shape and at the same time
move as a formation with a certain velocity v. When no active
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communications are allowed and the information about v is not
known by some agents, we then need to design algorithms using
range-only measurements for such agents to compute v. For both
of these situations, we extend the localization idea to allow one
agent to repeatedly measure its distance to a neighbor agent,
possibly a leader, at discrete time instants, and then process the
data using the Cayley–Menger determinant (Blumenthal, 1953;
Crippen & Havel, 1988), a convenient tool from distance geometry,
to both localize the neighbor/leader and learn its velocity.

The rest of the paper is organized as follows. In Section 2,
we formulate the formation control problem with range-only
measurements. In Sections 3 and 4, the motions for individual
agents and the agents as a team are discussed and a cyclic stop-
and-go strategy is proposed. When the agents are not allowed
to be stationary or the formation is required to move with a
constant velocity, we can still apply the cyclic stop-and-go strategy
by attaching the agents’ local coordinate systems rigidly to some
reference framework that moves with a constant velocity. Then
in Section 5, an algorithm is presented for a follower agent to
compute a leading agent’s velocity using only distance information.

2. Multi-agent formation

We assume the mobile agents can be described by kinematic
points. We consider a formation in R2 with the underlying graph
G = (V, E), where V and E denote the vertex set and edge
set of the graph. An edge joining vertices i, j is present in E
if and only if the desired distance to be maintained between
agents i, j is specified; call this edge (i, j) and call the specified
distance d∗

ij . We assume that the specified distances are indeed
achievable by an appropriate set of vertex positions. We assume
further that each agent can measure distances to its neighbors
in the graph (but not the relative positions), and can maintain
a map of its own motion into which it can insert estimates of
the positions of other agents, in every case using its own local
coordinate system. Each agent has a distinguishing label, and any
agent is able to correctly associate each measured distance with
the particular neighbor in question. When the agents are initially
located at positions for which the distance constraints are not
satisfied, the control task is to bring the formation to the correct
distances. Unless otherwise specified, we shall assume that the
underlying graph of the formation is generically minimally rigid
and the associated formation is minimally rigid (Anderson et al.,
2008). Note that the orientation and location of the centroid of
the formation are irrelevant for this purpose; an extended version
of the problem treated in Section 5, however, envisages assuring
that the agents learn the velocity of a leading agent. The leader’s
velocity is assumed to be constant and initially unknown, and the
followers take up positions while moving with the same velocity
as the leader.

We shall measure the closeness of a particular formation shape
to a desired formation shape by a type of Lyapunov function. For
those edges (i, j) in the edge set E , let dij denote the instantaneous
distance between the associated agents. Let pi ∈ R2 denote the
coordinate vector of agent i. The Lyapunov function is defined as

W (p1(t), p2(t), . . . , pn(t)) =

−
(i,j)∈E


d2ij(t) − d∗2

ij

2

. (1)

Actually, there is considerable freedom in specifying the Lyapunov
function. For example, we can replace the individual summands
in this equation by terms φ(d2ij, d

∗2
ij ) where φ is a smooth and

convex function of d2ij, parametrized by d∗2
ij , and with a minimum

at dij = d∗

ij .

3. Motion of a single agent

One moving agent can evidently localize a second stationary
agent if it has the ability tomap its ownmotionwithin its own local
coordinate system and the ability to repeatedly or continuously
measure the distance to any other agent, and does not move just in
a straight line. Consider an agent, A say, with nA > 0 neighbors,
the set of which is denoted by NA. Suppose A has just localized
the agents in NA. Then A could at once move to a position to
minimize the following agent-specific potential function, other
agents remaining stationary:

WA(p1, p2, . . . , pn) =

−
(A,j)∈E


d2Aj − d∗2

Aj

2

. (2)

If there are several positions that minimize the cost function, the
agent randomly picks one of them and stays there until the cost
function can be further reduced as a result of the movement of
its neighbors. Of course, the agent does not move if the function
happens to be alreadyminimized, even if there is a second position
at which the same value of the agent-specific cost function is
achieved. Although each agent only minimizes its own agent-
specific potential function, we want to show in the next section
that it is possible to coordinate the agents in such a way so that the
value of the Lyapunov function of the overall multi-agent system
can be effectively reduced during the evolution of the system.

4. Motion of the set of agents

We shall first of all describe a deterministic algorithm,
the implementation of which requires sharing limited further
information among the agents. Then we shall indicate how it can
be made random and asynchronous.

The first task is to determine amovement schedule. Amovement
schedule consists of a cyclic sequence {V1, V2, V3, . . . , Vm, V1, . . .}
of subsets of agents, such that
(1) In each Vi, no two agents are neighbors;
(2) Each agent occurs in at least one of V1, V2, . . . , Vm or

equivalently V = ∪
m
i=1 Vi;

(3) If agentA is inVi, it is not inVi+1, interpreting indices cyclically.

Between successive clock pulses, each agent of the active subset
identifies and then controls, i.e. it first moves so as to localize
its neighbors, whose stationarity is guaranteed by the first
requirement of the three above, and then it moves to a position
minimizing its potential function. Obviously, in a larger formation,
more than one non-neighboring agent can move at the same
time. The second requirement on the movement schedule ensures
that over one cycle, all agents have an opportunity to move, and
the third requirement enforces a measure of efficiency. We call
the above deterministic motion algorithm the cyclic stop-and-go
strategy.

Now we show how to construct efficiently the cyclic sequence
using only a small number of subsets Vi.

Proposition 1. For any minimally rigid formation G in the plane,
there always exists a movement schedule consisting of a cyclic
sequence of at most four subsets Vi, i = 1, . . . , 4.

We use the idea of vertex coloring in graph theory (Diestel, 1997)
to prove this proposition. By vertex coloring wemean the operation
to assign different colors to the vertices of the formation’s graph G
such that there is no edge in G connecting two vertices with the
same color.
Proof. It suffices to prove that we can use at most four colors
{ci}, i = 1, . . . , 4, to construct a set of vertex subsets Vi, each
of which corresponds to a different color. Consider any graph G
that can be vertex colored by four colors. Now we look at the two
Henneberg operations of vertex addition and edge splitting.
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Let G′ be any graph obtained from G by a vertex addition
operation, namely G′ is obtained from G by connecting a new
vertex to two of the vertices of G. Then it is always possible to
color this new vertex using a color from {ci} that is different from
the colors of the existing two vertices that it connects to. So the
vertices of G′ can be colored by {ci}.

Let G′′ be any graph obtained from G by an edge splitting
operation, namely G′′ is obtained from G by deleting an edge
(i, j) ∈ G, connecting another vertex k ∈ G to a new vertex v, and
adding two new edges (v, i) and (v, j). Since the three different
vertices i, j and k are colored by at most three different colors in
{ci}, it must be possible to pick a different color from {ci} to color v.
In other words, we can color the vertices of G′′ by the colors in {ci}.

So we have proved that starting from a graph whose vertices
can be colored by {ci}, the new graph obtained by either of the two
Henneberg sequence operations can always be colored by {ci} as
well. In view of thewell-known fact that anyminimally rigid graph
in the plane can be generated from a single edge by the Henneberg
sequence operations Tay and Whiteley (1985) and the vertices of
a single edge can always be colored by two colors, we have proved
that one can color the vertices of any minimally rigid graph in the
plane by {ci}, i = 1, . . . , 4. �

In fact the smallest number of the colors ci to color the vertices
of a graph is called the chromatic number of the graph. The
computation of the chromatic number for an arbitrary graph is NP-
hard (Brelaz, 1979), but we have just shown that the chromatic
number of a minimally rigid graph is at most four. Since in the
proof of Proposition 1, each graph operation involves at least three
colors, it must be true that the chromatic number of a minimally
rigid graphwithmore than two vertices is at least three. Sowehave
proved the following result.

Corollary 1. For anyminimally rigid graphwith at least three vertices
in the plane, its chromatic number is either three or four.

Note that in the proof of Proposition 1, we have also provided
a sequence of steps to assign the vertices of a formation’s graph
G to a movement schedule {V1, V2, . . . , Vm, V1, . . .} with m ≤

4. So in the design stage, one can follow these steps to obtain
an effective movement schedule, and then every agent knows
of which particular Vi it is a member. Suppose each agent is
aware of a common clock and the initial time, at which the subset
V1 is deemed to become active for the first time. At each clock
pulse, with pulses occurring periodically, the active subset changes
to the next member of the sequence defining the movement
schedule. When an agent is a member of an active subset, it
can move. Otherwise, it remains stationary. Therefore at every
(continuous) time instant, except at the clock timeswhen there is a
discontinuity, each agent knowswhether it is stationary ormoving,
according to whether it is in the active subset. In one cycle of the
movement schedule, a given agent may move more than once. We
show next how the value of the Lyapunov function changes when
adopting such a strategy.

Lemma 1 (Behavior of the Lyapunov Function). For the formation
control problemwith range-onlymeasurements under the cyclic stop-
and-go strategy, the Lyapunov functionW defined in (1)will decrease
monotonically to a limit.

Proof. Consider the sequence of values of the Lyapunov function
obtained by sampling at each clock pulse. The Lyapunov function
W in (1) contains a number of summands; when the agent pair
associated with a summand involves two agents which are not
moving, the summand will remain constant between those clock
pulses. The summands that can change are those involving an
agent which is a member of the set Vi, the active subset for
the interval in question. Let A be one such agent. Since each

agent optimizes its potential function after itsmovement, between
two clock pulses, WA cannot increase and in general will reduce.
Therefore,W can never increase, and in general will decrease, from
one clock pulse to another.

Obviously then the formation distances remain bounded. For
analysis purposes, regard the values of the edge lengths dij and
the agents’ positions as entries of a state vector, and consider the
discrete-time system obtained by the mapping from their values
at one clock pulse to their values at the next clock pulse. This
system is a discrete-time dynamical system. Accordingly, the dij
asymptotically go to the set ensuring that W at one clock pulse
equals the value at the next clock pulse. This means that the
asymptotic values of the dij must be such that no WA can be made
smaller by any change of the dij. This implies that W will go to a
limit as time goes to infinity. �

Lemma 1 can be further strengthened when we examine the
distances between the agents at the limit point of the Lyapunov
function W .

Lemma 2. For the formation control problem with range-only
measurements under the cyclic stop-and-go strategy, each distance
specified by the elements of the edge set E will reach a limit when the
Lyapunov function W defined in (1) reaches a limit.

Proof. From the proof of Lemma 1, one can see that when W
reaches a limit, Wi, i ∈ {1, . . . , n}, cannot be further reduced and
thus reach their limit points. This implies that each dij, (i, j) ∈ E ,
will remain fixed when W reaches its limit. In other words, the
distances corresponding to the elements in E will reach a limit. �

Lemmas 1 and 2 describe the global behavior of the Lyapunov
function and the distances between the agents under the cyclic
stop-and-go formation control strategy. Note that even for the
position-based formation control strategies, there is no complete
result about the global convergence analysis for the system’s
behavior. In what follows, we give the local convergence result for
the formations with range-only measurements that are perturbed
from its desired shape.

Theorem 1. For the 2n-dimensional multi-agent system with range-
only measurements starting from the neighborhood of the manifold
of the desired formation, if the graph of the formation is generically
minimally rigid, the stop-and-go strategy will always cause the
formation to converge to a formation with desired shape where all
distances are correctly attained.

Proof. We first examine the stationary points of W because such
points will be corresponding to the final shape of the multi-agent
formation. Suppose agent A positioned at (xa, ya) has as its neigh-
bors An1, An2, . . . , Ana, with coordinates (xan1 , yan1), (xan2 , yan2),
. . . , (xana , yana). Then the use of the fact that (xa, ya) minimizes VA
yields the following necessary condition for an equilibrium point
of the system:

xa − xan1 ya − yan1
xa − xan2 ya − yan2

...
...

xa − xana ya − yana


T 

d2aan1 − d∗2
aan1

d2aan2 − d∗2
aan2

...

d2aana − d∗2
aana

 = 0. (3)

A set of equations of this form can bewritten for each A, and the
equations can be grouped as

RTE = 0 (4)

where R is the rigidity matrix (Anderson et al., 2008) of the
formation and E is a vector of errors in squared distances, a generic
entry being d2ij−d∗2

ij . If the formation graph is genericallyminimally
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Fig. 1. The follower f measures the relative distances d1, d2 and d3 at times 0, T
and 2T .

rigid, it follows that for generic positions of the formation, the
kernel of RT is trivial, and therefore the equilibrium points for
such a formation are necessary such that either all distances are
correctly attained, or the agents of the formation are at non-generic
positions causing the formation to not be infinitesimally rigid at
those positions.

In the neighborhood of the desired formation in the shape
space, there is no equilibrium for which the agents are at non-
generic positions. According to Lemma 1, the Lyapunov function
W goes to a limit, and in view of (4) and the fact that in the
neighborhood the equilibrium points always correspond to the
formations with the desired shape, it must be true that W will
always decrease to zero in which case all the distances within the
formation are correctly attained. �

It has been shown before that using the gradient-like control
laws, formations describedbydirected graphs behave substantially
differently from their undirected counterparts (Cao et al., 2011;
Krick et al., 2009). However, this is not the case for the cyclic stop-
and-go strategy proposed in this paper. The key fact is that in the
framework discussed in this paper, the directedness of a formation
graph only affects the scheduling since neighbor relationships are
now undirectional. As a result, the Lyapunov function W will still
converge to a limit although it may decrease with a slower rate in
the directed case than in the undirected case.

The algorithm requires all agents to have a common clock, and
to have advance knowledge of a movement schedule. Now we
seek to relax these assumptions. If an agent, A say, is stationary,
it will know this; at the same time, it can in general detect when
its neighbors are moving. Suppose A cannot detect motion of any
of its neighbors. After a random but bounded waiting time that
is also bounded below, if no neighbor agent has yet commenced
to move, A begins to move with constant velocity. If one of its
neighbors commences movement at the same time, A can detect
this. Likewise, the moving neighbor can detect that A is moving.
Both cease moving, and restart the random waiting time part of
the process. Note that such a strategy is analogous to the medium
access control protocols used for communication inwireless sensor
networks (Demirkol, Ersoy, & Alagoz, 2006).

In the next section, we consider the problem of coordinating
a formation of mobile agents with a neighbor moving at constant
velocity under the constraint that only distancemeasurements are
available. Such a neighbor may be a leader of a formation, with
the formation required to maintain movement as a whole with a
prescribed velocity which is initially only known by that leader.

5. Coordination with a moving leader

We consider a neighbor and possibly a leading agent l and a
following agent f in the plane. Agent l is moving with a constant
velocity v that is unknown to the follower f . Agent f cannot
communicate with the leader l to acquire agent l’s position and can
only measure the distance d(t) between itself and agent l through
its range sensor. We assume that agents l and f are in generic
positions; in other words, they do not coincide with each other

in the beginning and agent f ’s initial position is not in the line
that is determined by agent l’s initial position and direction of
movement. We also assume that agent l will be within the disk,
which is centered at agent f ’s initial position with radius to be
agent f ’s sensing range, for a sufficiently long time. The problem
is to devise a computation algorithm for agent f that enables it to
infer agent l’s velocity v (and position) after a minimum number
of measurements of d(t). We first introduce a powerful tool in
distance geometry, called the Cayley–Menger determinant.

5.1. Cayley–Menger determinants

The Cayley–Menger Matrix of two sequences of n points,
{p1, . . . , pn} and {q1, . . . , qn} ∈ Rm, is defined as

M(p1, . . . , pn; q1, . . . , qn)

,


d2(p1, q1) d2(p1, q2) · · · d2(p1, qn) 1
d2(p2, q1) d2(p2, q2) · · · d2(p2, qn) 1

...
...

. . .
...

...

d2(pn, q1) d2(pn, q2) · · · d2(pn, qn) 1
1 1 · · · 1 0

 (5)

where d(pi, qj), i, j ∈ {1, . . . , n} is the Euclidean distance between
the points pi and qj. The determinant of this matrix M is then
called the Cayley–Menger bideterminant (Crippen & Havel, 1988)
of these two sequences of n points. When the two sequences of
points are the same, e.g. pi = qi, we then write the matrix M as
M(p1, . . . , pn) and call the determinant the Cayley–Menger
determinant. The following theorem is a classical result on the
Cayley–Menger determinant (Blumenthal, 1953).

Theorem 2. For an n-tuple of points p1, . . . , pn in m-dimensional
space with n ≥ m + 2, the rank of the Cayley–Menger matrix
M(p1, . . . , pn) is at most m + 2.

5.2. Coordination algorithm

For clarity of the discussion, we assume that the follower f ’s
range measurements are precise. The proposed algorithm consists
of two steps. The first step is to compute the speed |v| of the leader;
and the second step is to compute the direction of v.

5.2.1. Computation of the speed |v|

It is obvious that agent f cannot determine |v| by just taking one
rangemeasurement. Then the questions are howmanymore range
measurements are needed and when and how these additional
measurements should be taken. By purely geometric arguments,
one can easily see that it is still not sufficient to determine |v|

by just taking two range measurements. Now we will show that
it is possible for agent f to compute |v| by taking three range
measurements.

As indicated in Fig. 1, we propose to let agent f measure, at a
fixed position, the relative distances d1, d2 and d3 with respect to
agent l at times 0, T and 2T where T is some positive constant.

Let x denote the distance traveled by agent l over a period of
time T . Then agent l’s speed |v| =

x
T . Let y = x2, l1 = d21, l2 = d22

and l3 = d23. Now consider the degenerate quadrilateral shown in
Fig. 1. In view of Theorem 2, we can obtain the algebraic equation
describing the geometric relationships between x, d1, d2 and d3 as
follows:

det


0 y 4y l1 1
y 0 y l2 1
4y y 0 l3 1
l1 l2 l3 0 1
1 1 1 1 0

 = 0. (6)
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Fig. 2. Three distance measurements d1, d2, d4 and one computed distance h1 .

There are three solutions to this equation, which are y1 = 0 and
y2 = y3 =

l1−2l2+l3
2 . Since x has to be positive, it must be true that

x =


d21−2d22+d23

2 . Then there is a unique solution for the speed |v|

which is

|v| =


d21 − 2d22 + d23

2


T . (7)

In fact, the strategy for agent f discussed in this subsection can be
further generalized. In particular, it is not needed for the agent f to
measure its relative distances to the leader l at equally spaced time
instances 0, T and 2T . Assume agent f takes the measurements
in sequence at times T1, T2 and T3. Then the distances traveled by
agent l over [T1, T2] and [T2, T3] are (T2 − T1)|v| and (T3 − T2)|v|

respectively. Again, let l1 = d21, l2 = d22 and l3 = d23 and denote
|v|

2 by z. Then similar to (6), one can use the Cayley–Menger
determinant again to write down an algebraic equation in z and
then solve for |v|.

5.2.2. Computation of the direction of v
In order to determine the direction of movement of the leader,

agent f has to perform some local movement and cannot remain
stationary. Here we propose a possible maneuvering strategy that
continues the discussion in the previous subsection where range
measurements d1, d2 and d3 are taken at times 0, T and 2T .

As indicated in Fig. 2, we require agent f to start a linear motion
at time 0with a given constant velocity s, take ameasurement d4 at
time T/2, and then return to its initial position to take the planned
measurement d2 at time T .

After 2T , we have obtained |v| using the algorithm discussed
in the previous subsection. Then we can compute the distances
|pl1pl4| = |pl4pl2| = |v|T/2. Now we examine the distances
between the four points pf 1, pl1, pl4 and pl2. There is only one
unknown |pf 1pl4| , h1 which can be computed by solving the
equation in the form of the Cayley–Menger determinant of the
corresponding four points:

D(pf 1, pl1, pl4, pl2) = 0.

One can find that this equation gives us the solution

h1 =


d21 + d22

2
−

|v|2T 2

4
.

To find the direction of the velocity v, we need to solve for the value
of the angleα as indicated in Fig. 2.We first note that in the triangle
formed by the points pf 1, pf 2 and pl4, using the law of cosines, one
can compute for the angles ̸ pf 1pf 2pl4 and ̸ pf 1pl4pf2 . Then applying
the law of cosines to the triangle formed by the points pf 1, pl1 and
pl4, one can compute for the angle ̸ pf 1pl4pl1. Finally, we examine
the triangle formed by the points pf 2, pl4 and the intersection point
of the lines pf 1pf 2 and pl1pl4, and we have

α = π − ̸ pf 1pf 2pl4 − ̸ pl1pl4pf 2. (8)

However, with only the value of α, there is still a flip ambiguity
for the direction of v with respect to the linear trajectory of the
follower’s movement. To get rid of the flip ambiguity, the follower
can take some range measurements while making a linear motion
in a different direction in the time interval (T , 2T ). Then theremust
be a unique solution which fits all the range measurement data
with respect to both of the two linear motion trajectories. In fact,
it is not necessary for the agent f to follow a linear trajectory in
the second time interval (T , 2T ). Any motion that is not in the
direction of s should be sufficient to get rid of the flip ambiguity
in the direction of v.

Combining the discussions in the above two subsections, we
have designed an algorithm for the follower f to obtain the velocity
of the leader f using only range measurements without active
communication. It is trivial to see that agent l can also obtain the
instantaneous position of f . This algorithm is distributed because
it does not need centralized coordination and only makes use of
local information. Thus this algorithm can be applied to a scalable
team of autonomous mobile agents when proper connectivity
relationships are ensured.

6. Conclusions

In this paper, we have proposed cooperative control strategies
for the formation control problemwith range-onlymeasurements.
Despite the fact that each agent has less information available than
what has beenusually assumed, the proposed stop-and-go strategy
can stabilize a generically minimally rigid formation. We have also
used the Cayley–Menger determinant to enable a follower in the
formation to compute the constant velocity of a neighbor, possibly
a formation leader, using range-only measurements.

Currently we are carrying out analysis for the effect of
measurement errors and delays on the convergence of the
proposed strategy. We are also interested in implementing the
strategies discussed in this paper using a mobile robotic testbed.
There are also some more general developments that can be
considered. The strategy of localizing individual stationary agents
by a moving agent using range measurements could similarly be
used if bearing measurements only were available; this is easy to
see. Establishing that one can localize and determine the velocity of
an agent moving with uniform velocity via bearing measurements
alone is less obvious. Also, localization via range measurements
with bounded sensing range constraints should be considered: this
may be hard when an agent is moving with a constant unknown
velocity.
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