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Upper and Lower Bounds for Controllable Subspaces of
Networks of Diffusively Coupled Agents

Shuo Zhang, Ming Cao, and M. Kanat Camlibel

Abstract—This technical note studies the controllability of diffusively
coupled networks where some agents, called leaders, are under the influ-
ence of external control inputs. First, we consider networks where agents
have general linear dynamics. Then, we turn our attention to infer network
controllability from its underlying graph topology. To do this, we consider
networks with agents having single-integrator dynamics. For such net-
works, we provide lower and upper bounds for the controllable subspaces
in terms of the distance partitions and the maximal almost equitable
partitions, respectively. We also provide an algorithm for computing the
maximal almost equitable partition for a given graph and a set of leaders.

Index Terms—Almost equitable partition, controllability, distance parti-
tion, linear diffusive coupling, multi-agent networks.

I. INTRODUCTION

Recently, significant work has been done to study distributed and
cooperative control of multi-agent networks [2], [3]. It is of particular
interest to study the case when the agents are coupled together through
linear diffusive couplings since rich collective behaviors, such as syn-
chronization [4] and clustering [5], [6], may arise as a result of local
interactions among agents without centralized coordination or control.
To reduce the complexity of controller design, one is especially inter-
ested in knowing how to influence the behavior of the overall system
by just controlling a small fraction of the agents [7], [8]. We call such
agents that are under the forcing of external control inputs the leaders
and correspondingly the rest of the agents followers. Hence, to study
whether any desired collective behavior can be achieved in finite time
by controlling the leaders is equivalent to the study of the controllability
of the overall systems consisting of all the leaders and followers. For
example, the controllability problem has been related to the problem
of controlling a formation of mobile robots by manipulating the trajec-
tories of the leaders such that all the robots can move from any initial
positions to any desired final positions within finite time [9].
The controllability of diffusively coupled multi-agent networks was

first studied in [10] and later in [11]–[16]. However, most existing re-
sults deal with networks where agents have single-integrator dynamics,
except for agents with double-integrator dynamics [17] and agents with
higher-order-integrator dynamics [18]. In this technical note, we first
study diffusively coupled networks where agents have identical (gen-
eral) linear dynamics. We reveal in Theorem 1 the dependence of con-
trollability of such networks on agent dynamics and network topolo-
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gies. Existing results on agents with higher order integrator dynamics
[17], [18] can be considered as special cases of Theorem 1.
To infer network controllability from its topology, we then focus

on diffusively coupled networks with single-integrator agents. For the
controllable subspace of such a network, we provide:
i) a lower bound on its dimension in terms of the distance partitions
(in Theorem 2);

ii) an upper bound in terms of the maximal almost equitable parti-
tions (in Theorem 4).

The contribution of these results to the state-of-the-art is two-fold.
Firstly, the distance partitions in Theorem 2 yield easily computable
lower bounds. Secondly, the upper bounds we provide are valid in the
case of multi-leader scenarios unlike the existing upper bounds in the
literature [11], [15] which only deal with single-leader cases. Also, we
provide an algorithm for obtaining the maximal almost equitable par-
tition for given leaders.
The technical note is organized as follows. In Section II, we first

introduce the class of multi-agent networks that is of interest in this
technical note and later provide necessary and sufficient conditions for
controllability of such networks. Section III is devoted to the study of
multi-agent networks with single-integrator agent dynamics in order
to reveal the effect of the underlying topology on the controllability.
In this section, we provide a lower bound for the controllable sub-
space of such a network in terms of distance partitions and an upper
bound in terms of the so-called almost equitable partitions. Section IV
presents an algorithm in order to compute the almost equitable parti-
tion which bounds the controllable subspace from above. Finally, the
technical note ends with the conclusions in Section V.

II. MULTI-AGENT NETWORKS AND THEIR CONTROLLABILITY

A. Diffusively Coupled Multi-Agent Networks

Consider a multi-agent system consisting of agents labeled
by the set where is a positive integer. We
assign the roles of leaders and followers to the agents and define

where is a positive integer with and
to denote the sets of indices of the leaders and followers,

respectively.
To each follower , we associate a linear dynamical system

and to each leader and a linear dynamical system

where denotes the state of agent , the external
input to agent , the coupling variable for the agent ,
and all involved matrices are of appropriate dimensions.
Two distinct agents and are said to be neighbors if their states are

known by each other. Throughout this technical note, we assume that
the neighboring relationships are fixed. Such neighboring relationships
can be described by a simple undirected graph where
is the vertex set and is the edge set such that if agents
and are neighbors. The coupling variable for each agent
is determined by the so-called diffusive coupling rule based on the

neighboring relations as follows:

where is the matrix describing the coupling strengths.
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By defining and
, we can write the dynamics of the above

multi-agent system into a compact form

(1)

where with being the Laplacian matrix of
, with defined by

if
otherwise.

Here “ ” denotes the Kronecker product (see e.g., [19]). Note that the
matrix product is sometimes called the inner coupling matrix in
the study of the synchronization behavior in complex networks [4]. In
the next subsection, we study the controllability of system (1).

B. Controllability of Diffusively Coupled Multi-Agent Systems

In the following theorem, we provide necessary and sufficient con-
ditions for the controllability of the multi-agent system (1).
Theorem 1: The pair is controllable if and only if the pair

is controllable and for each eigenvalue of the pair
is controllable.

Proof: (Necessity) We only prove the necessity of the controlla-
bility of the pair , and the necessity of the controllability of the
pair can be proved in a similarmanner. Suppose
is uncontrollable. Then there exists some nonzero such that

and . Let be a left-eigenpair
of the matrix . Note that is a left-eigenpair of
and where denotes the
conguate transpose of the vector . This implies that the pair
is uncontrollable.
(Sufficiency) On the contrary, suppose that is uncontrollable.

Since is symmetric, one can always find an orthonormal matrix
such that where ’s are eigenvalues of
. Now consider the following twomatrices and that are obtained
from and respectively according to

Since is uncontrollable and is nonsingular, the pair
is also uncontrollable. In view of the block diagonal structure

of , we know that there must exist an index with
such that the corresponding matrix pair
is uncontrollable, where for a matrix we use to denote its
th row. This, however, implies that is uncontrollable in case

or is uncontrollable in case
. Hence, we arrive at a contradiction.
The main results of [17], [18] on the controllability of networks of

agents with higher-order-integrator dynamics can be recovered from
Theorem 1 as special cases.
Theorem 1 also reduces the computational cost for checking con-

trollability because the dimensions of the controllability matrices of
the pairs and are much lower than that of the
pair when the number of agents is large or the dimension
of agent dynamics is high.
One can roughly interpret the two conditions stated in Theorem 1 to

be the effects of network topologies and agent dynamics on controlla-
bility. In the next section, we reveal the relationship between network
controllability and the underlying graph topologies.

III. CONTROLLABILITY OF SINGLE INTEGRATORS
AND GRAPH PARTITIONS

When the agents are governed by single-integrator dynamics, system
(1) becomes

(2)

Then the controllability of the network is completely determined by the
underlying topology given by the pair of matrices and . In what
follows, we want to provide lower and upper bounds for the control-
lable subspace of system (2).
Towards this end, we quickly review graph partitions.

A. Graph Partitions

Let be an undirected graph with the vertex set . A subset of
is called a cell. A collection of cells is called a

partition if the cells are mutually disjoint and . We use
to denote the partition. The characteristic ma-

trix of the partition is defined
by

if
otherwise.

Next, we introduce particular partitions and employ them in order to
obtain bounds for the controllable subspace of system (2).

B. Lower Bounds by Distance Partitions

The distance between two vertices is the length of the
shortest path from to in and will be denoted by . For
convenience, we say for any . The diameter of
is defined by Obviously, when is
connected [9] and , it holds that . Let be a
connected graph and . The distance partition relative to con-
sists of the cells for .
We denote the distance partition relative to by . The following
lemma is a direct consequence of the definition of .
Lemma 1: For any and , it holds that

.
The following theorem provides a lower bound for the dimension of

the controllable subspace in terms of the distance partition relative
to the leaders.
Theorem 2: If is connected, then

.
Proof: We first prove that if then

. Without loss of generality, we take ,
with

where and . In view
of Lemma 1, we know that no vertex in has a neighbor in if

. This means that is of the form

...
...

...
...
. . .

...
...

...
(3)
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where is the all-one column vector of dimension and
are matrices for all . Since ,

. Let .
Then, we get

...
...

...
...

. . .
...

...

where ‘*’ denotes the corresponding elements of less interest. Since
is connected, each diagonal block must be nonzero. Then

. Therefore, by further using the fact that
, we have

Now we consider the case when . Clearly, we
have for any . Therefore,

.
Next, we introduce almost equitable partitions in order to provide an

upper bound for the controllable subspace.

C. Upper Bounds by Almost Equitable Partitions

For a graph , a partition is said to be an al-
most equitable partition if for any distinct cells and , every vertex
in has the same number of neighbors in [20]. We denote the set
of all the almost equitable partitions of by . Almost equitable
partitions have the following key property that is related to the Lapla-
cian matrices of the corresponding graphs. In the sequel, we say that a
subspace is -invariant if where .
Lemma 2 [20, Prop. 1]: A partition is almost equitable if and only

if is -invariant.
To come up with an upper bound for the controllable subspace, we

need to compare different partitions. We say that a partition is finer
than another partition if each cell of is a subset of some cell of
and we write . It is a direct consequence of the definition

that

(4)

Let . Note that
. Define

(5)

The following theorem shows that each partition belonging to
provides an upper bound for the controllable subspace .

Theorem 3: For any , .
Proof: It follows from Lemma 3 that is -invariant for

each . As noted before, . In view
of (4), this means that for each with .
In particular, we have for each .
Therefore, the subspace is -invariant and contains .
Since the controllable subspace is the smallest subspace with these
properties, we get for each .
Remark 1: Theorem 3 applies when there are multiple leaders. As

such, it extends the similar result of [12, Prop. 2], (see also [21]) which
deals with the single-leader case.

A natural question to ask is how to sharpen the upper bounds pro-
vided by Theorem 3. Obviously, the tightest bound which can be ob-
tained by this theorem is given by

However, this bound is not very practical as it requires the computation
of all the almost equitable partitions which are finer than the partition
. The relation (4) suggests that one can provide an upper bound in

terms of a partition which is maximal in a certain sense. More precisely,
if one can show that there exists a partition such that

for each , then one can conclude that

In [12] (see also [21]), such a bound is provided for the single-leader
case without formally proving the existence of such a partition. In what
follows, we investigate the structure of the set in detail and show
that such a maximal partition exists and is unique. Furthermore, we will
present an algorithm in order to compute this maximal partition. To do
so, we need to introduce some notations.
Let denote the set of all the partitions of . With the partial order

“ ”, the set becomes a complete lattice (see e.g., [22]) which means
that every subset of has both its greatest lower bound and least upper
bound within . We use to denote the least upper bound of a
subset . By definition, the least upper bound has the following
property:

(6)

The complete lattice structure of readily implies that the
set admits a unique least upper bound

such that for each .
However, the least upper bound of a subset of does not need to
belong to the subset in general. As such, one needs to further show
that belongs to in order to conclude that

. To do so, we first state the following auxiliary
lemma.
Lemma 3 [1, Lemma 1]: For any subset of , it holds that

.
Based on this lemma, we are in a position to prove that the maximal

partition belongs to the set .
Lemma 4: It holds that .
Proof: It follows from (5) and (6) that . There-

fore, it remains to show that is an almost equitable partition.
To see this, note that

(7)

due to Lemma 3. In view of Lemma 3, is -invariant for each
. Since the intersection of -invariant subspaces must

be -invariant too, it follows from (7) that is -in-
variant. So one can conclude from Lemma 3 that is an al-
most equitable partition.
Combining Theorem 3 with Lemma 4, we can state the following

tightened bound for the controllable subspace.
Theorem 4: It holds that .
Remark 2: The bounds presented in Theorem 2 and Theorem 4 are

tight for general graphs in the sense that one can construct graphs such
that those bounds hold with equality. Consider the system (2) associ-
ated with the graph depicted on the left of Fig. 1. If agents 1 and 4
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Fig. 1. Examples illustrating the tightness of the lower/upper bounds.

are chosen as leaders, then the lower bound holds with equality which
is strictly less than the upper bound. If agents 1 and 3 are chosen as
leaders, then the upper bound holds with equality which is strictly
greater than the lower bound. For the system associated with the graph
shown on the right of Fig. 1, if we choose agent 1 to be the single
leader, neither of the two bounds is achieved. Moreover, one can check
that there is no partition for which the image of its characteristic matrix
is equal to the controllable subspace.
The bounds in Theorems 2 and 4 coincide for some specific graphs,

for instance distance regular graphswith a single-leader as shown in [1].
The lower bound in Theorem 2 is easy to check since distance

partitions can be obtained rather straightforwardly. However, the
computation for the upper bound presented in Theorem 4 is not so
straightforward since there are no algorithms to obtain almost equi-
table partitions with the constraint that multiple cells (corresponding
to the leaders in our setting) have been strictly specified. In the next
section, we develop an algorithm through which the least upper bound

of the set can be computed starting from a
given partition .

IV. ALGORITHM TO COMPUTE

To present the algorithm, we need to define a few concepts first. Let
denote all matrices with rows. Let be the

mapping such that for any matrix , it holds that and
are in the same cell of if and only if the th and th rows of the
matrix are the same. Note that

(8)

for any partition .
Nowwe present an algorithm that computes starting from

partition .
Theorem 5: Let . Define the sequences

(9)

where . Then, there exists an integer with
such that for all .
To prove this theorem, we will use the following auxiliary lemma.
Lemma 5: Let . The following statements hold.
1. .
2. implies that .
Proof:

1) : It follows from the definition of that for each matrix
, there exists a matrix such that .

Consequently, .
2) : In view of (4), it suffices to prove that . To do
so, let and be such that the th and th rows of the matrix
are the same. Since , there exists a matrix such
that . Then, the th and th rows of the matrix must
be the same. Therefore, it follows from the definition of that
any cell of is a subset of a cell of . In other words,

.
Now we are ready to prove Theorem 5.

Proof of Theorem 5: Note that

Then, it follows from Lemma 5.2, (4) and (8) that
. Therefore, we obtain

(10)

for all . Now, we claim that the implication

(11)

holds. To show this, note that
if . Then, it follows from Lemma 5.1 and (8) that

. This means that

(12)

Since , (12) implies that for all . Since
when and when ,

we get . Then, (10) and the implication (11) imply that
there exists an integer with such that
for all . What remains to prove is that

(13)

From (12), we know that is -invariant. Then, is an almost
equitable partition due to Lemma 3. We also know from (10) that
. Therefore, . This implies that

(14)

Now, we claim that

(15)

for each . We prove this claim by induction on . When
, (15) follows from the definition of that

. Now, assume that holds for
some . It follows from (4) that
and from Lemma 3 that . Therefore,

. Then, we obtain from
Lemma 5. 2 and (8) that . Hence,
(4) yields that . Consequently, (15) is proven. In
particular, we can conclude that

Together with (14), this implies that (13) holds.
To illustrate the algorithm by means of examples, we consider the

diffusively coupled network (2) corresponding to the graph depicted in
Fig. 2. Note that the Laplacian matrix is given by

for this graph. We employ the algorithm for three different leader sets.
Figs. 3, 4, and Fig. 5 depict, respectively, the partitions obtained by
the recursion (9) for the leader sets , , and
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Fig. 2. Example for the algorithm.

Fig. 3. Execution of the algorithm for .

Fig. 4. Execution of the algorithm for .

. In all these cases, the last partition correspond to the maximal
almost equitable partition .

V. CONCLUDING REMARKS

We have studied controllability of networks of agents with linear
dynamics. After investigating the effect of network topologies on con-
trollability, we have focused on network with agents having single-in-
tegrator dynamics. For this case, we have presented a lower bound for
controllable subspace in terms of the distance partitions and an upper
bound in terms of the maximal almost equitable partitions. To compute

Fig. 5. Execution of the algorithm for .

the upper bound, we have provided an algorithm that finds the maximal
almost equitable partition for given leaders.
As future research directions, we are interested in studying control-

lability of multi-agent networks when their associated graphs are di-
rected and/or time-varying. Also, we envision that the use of ideas and
notions of geometric control theory in the context of multi-agent sys-
tems would lead to graph topological interpretation of many other fun-
damental control theoretic problems.
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Output Synchronization of Networked Passive Systems
With Event-Driven Communication

Han Yu and Panos J. Antsaklis

Abstract—In this note, we study the output synchronization problem of
networked passive systems with event-driven communication, in which
the information exchange among the coupled agents are event-based
rather than pre-scheduled periodically. We propose a setup for the
interconnected agents to achieve output synchronization with event-
driven communication in the presence of constant communication delays.
The results presented here are important extensions of applying event-
driven communication to control of multi-agent systems, especially when
it is difficult to derive a common upper bound on the admissible network
induced delays, or when the network induced delays between coupled
agents are larger than the inter-event time implicitly determined by the
event-triggering condition.

Index Terms—Communication delay, control of multi-agent systems,
event-driven communication, graph theory, output synchronization,
passivity.

I. INTRODUCTION

Several researchers have recently proposed event-based control as a
promising approach to reduce the control related communication and
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computation load in many control applications. In a typical event-based
implementation, the control signals are kept constant until the viola-
tion of an “event-triggering condition” on certain signals triggers the
re-computation of the control actions. Compared with time-driven con-
trol, where constant sampling period is adopted to guarantee control
system’s stability in the worst-case scenario, the possibility of reducing
the number of re-computations, and thus of transmissions, while guar-
anteeing desired levels of performance makes event-based control very
appealing in Networked Control Systems (NCSs). A comparison of
time-driven and event-driven control for stochastic systems favoring
the latter can be found in [1]; a deterministic event-triggered control
strategy is introduced in [2]; similar results on deterministic self-trig-
gered feedback control have been reported in [3], [4]; output-based
event-triggering control with guaranteed -gain for linear time-in-
variant systems has been studied in [5]; an event-triggered real-time
scheduling approach for stabilization of passive and output feedback
passive (OFP) systems has been proposed in [6], and extensions to
more general dissipative systems with time-varying network induced
delays have been reported in [7], [8] and [9]; event-triggering stabiliza-
tion for distributed networked control systems has been studied in [10];
in [11], a self-triggered coordination strategy for optimal deployment
of mobile robotics is proposed.
There has also been a growing interest in coordination and coop-

erative control of multi-agent systems supported by significant devel-
opments in the fields of communication and computation technologies
during the past decade. Several results concerning distributed cooper-
ative control strategies for multi-agent systems have appeared in the
literature involving agreement or consensus algorithms [12]–[15], for-
mation control and group coordination [16], [17], distributed estima-
tion [18], to name a few. In addition to the design of distributed control
strategies, there are issues regarding the implementation of the control
algorithms, which have not received enough attention so far. Important
aspects in the implementation of distributed algorithms for cooperative
control of multi-agent systems include communication data transmis-
sion and control actuation update strategies. A lot of work in the litera-
ture assume that the control law processed in the distributed controller
and the data transmissions scheduled between agents are implemented
in a conservative way, where a tight upper bound is selected as the
maximal allowable inter-execution time to guarantee stability of the
multi-agent systems in all possible operational scenarios. This tradi-
tional time-driven control approach may lead to inefficient implemen-
tation of the distributed control algorithms in terms of processor usage
or communication bandwidth. All of those issues mentioned above
bring event-based control as a promising alternative approach because
of its potential in reducing communication load and implementation
cost for the purpose of control.
Most of the work on event-triggered control focuses on sensor-ac-

tuator NCSs, and there has not been enough emphasis on applying
event-triggered control to the cooperative control of multi-agent sys-
tems, although some recent work on event-triggered consensus prob-
lems have been reported in [19] and [20]. However, a severe limitation
of the proposed control strategy in [19] is the fact that each agent has
to monitor the states of its neighboring agents continuously in order
to evaluate the triggering condition. In [20], the authors further pro-
pose a distributed self-triggering cooperative control strategy for the
consensus problem based on their previous work [19]. Although the au-
thors have proved that the inter-event time implicitly determined by the
triggering condition is positive, it is still difficult to derive a common
lower bound on the inter-event time because the updates of the neigh-
boring agents may make an agent satisfy its triggering condition imme-
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