Confidence Intervals for ARMA-GARCH

Value-at-Risk

Laura Spierdijk*

May 31, 2013

*University of Groningen, Faculty of Economics and Business, Department of Economics, Econometrics and Finance, P.O. Box 800, NL-9700 AV Groningen, The Netherlands. Email: l.spierdijk@rug.nl. Phone: +31 50 363 5929. Fax: +31 50 363 7337.
Abstract

The quasi-maximum likelihood (QML) estimators of a GARCH model may not be normally distributed when the model errors lack a finite fourth moment. However, conventional methods to obtain confidence intervals for GARCH-based Value-at-Risk estimates rely on asymptotic normality. This study proposes a residual subsample bootstrap to estimate confidence intervals for QML-based ARMA-GARCH Value-at-Risk (VaR) estimates. Simulation experiments show that this approach yields confidence intervals with correct empirical coverage rates, even when conventional methods fail. An application to daily stock returns illustrates the empirical relevance of the residual subsample bootstrap.

Keywords: quasi-maximum likelihood, heavy tails, subsample bootstrap

JEL classification: C22, C53, C58
1 Introduction

During the past decades Value-at-Risk (VaR) has become a standard tool in risk management. For example, the capital requirements for insurance companies operating in the European Union, as prescribed by the Solvency II Directive, are based on the 99.5% VaR of the portfolio of assets and liabilities measured over a one-year time horizon (Sandström, 2011).

The ϵ%-VaR is defined as the ϵ% quantile of a given profit-and-loss (P-L) distribution. VaR estimation requires certain assumptions about the latter distribution. When the P-L distribution of a portfolio of securities is the object of interest, it has become fairly standard to assume a distribution of the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) type (Engle, 1982; Bollerslev, 1986) GARCH models capture an important stylized fact of asset returns known as volatility clustering: high (absolute) returns tend to be followed by more high returns and low (absolute) returns tend to be followed by more low returns. Models of the GARCH-type are able to deal with this form of conditional heteroskedasticity.

An attractive property of GARCH models is that consistent estimation of the model parameters does not require knowledge of the distribution of the model errors. Quasi-maximum likelihood (QML) is based on the normal likelihood function and yields consistent parameter estimates even when normality is violated, provided that certain regularity conditions hold (Hall and Yao, 2003; Francq and Zakoïan, 2004). Consistent (but generally inefficient) estimation of the covariance matrix is possible using the sandwich estimator proposed by Bollerslev and Wooldridge (1992).

VaR estimates depend on the estimated parameters of the underlying P-L distribution, which are subject to estimation uncertainty. To judge the accuracy of a VaR estimate, it is crucial to quantify this estimation uncertainty in terms of a confidence interval. When the confidence interval around a VaR estimate is found to be wide, caution is required when decisions are to be based on the inaccurate point estimate.

Several methods can be used to quantify the parameter uncertainty associated with model-based VaR estimates. Among these methods are the Delta method (Duan, 2004) and the residual bootstrap (Dowd, 2002; Christoffersen and Gonçalves, 2005).

Hall and Yao (2003) show that non-normality of the QML estimator arises in a GARCH
model when the fourth moment of the model errors is not finite and the distribution of the squared model errors is not in the domain of attraction of the Normal distribution. It is obvious that the Delta method is not appropriate in such a case. Furthermore, it is well known that the conventional bootstrap is generally not consistent when the limiting distribution of a statistic is not standard Normal after appropriate normalization (Athreya, 1987a,b; Knight, 1989; Hall, 1990; Mammen, 1992). If the model errors belong to the class of regularly-varying distributions with proportional tails, the asymptotic distribution of the extreme conditional quantiles is available under certain assumptions and can be used to obtain analytical confidence intervals (Chan et al., 2007). As usual, these assumptions incur the risk of misspecification. However, the literature has not yet shown how to obtain confidence intervals with correct coverage without additional assumptions.

This paper proposes a new method to obtain confidence intervals for QML-based VaR estimates, derived from ARMA-GARCH models with unknown error distribution. No prior knowledge about the distribution of the model errors is assumed, apart from some minimal regularity conditions. The fourth moment of the error distribution is allowed to be either finite or infinite. The residual subsample bootstrap that we propose boils down the subsample bootstrap of Sherman and Carlstein (2004), applied to the residuals of the ARMA-GARCH model. An attractive feature of our approach is that it is based on an ‘omnibus’ procedure. Regardless of the distribution and the moments of the model errors, the subsample bootstrap will produce confidence intervals with correct empirical coverage rates.

Given the empirical evidence for heavy-tailed asset returns (see e.g. McNeil and Frey (2000)) and asset returns that lack a finite fourth moment (Pagan, 1996; Cont, 2001; Embrechts et al., 1997), there is a substantial risk that conventional methods will fail. Fortunately, the residual subsample bootstrap provides an omnibus approach to obtain confidence intervals for VaR estimates.

By means of a simulation study we show that the residual subsample bootstrap approach yields confidence intervals with accurate coverage in all situations, but particularly when conventional methods fail due to a lack of asymptotic normality of the QML estimators. The residual subsample bootstrap also performs satisfactory when sample sizes are relatively modest.
Rule-of-thumb choices for the length of the subsample, as proposed by Sherman and Carlstein (2004), turn out to work well in an ARMA-GARCH context. We compare the coverage rates of our method with those of the Normal approximation method of Chan et al. (2007). Like our method, the latter approach does not rely on asymptotic normality of the QML estimator. Also this comparison turns out favorable for the confidence intervals based on the residual subsample bootstrap.

Application of the residual subsample bootstrap when the VaR estimator is asymptotically normally distributed results in confidence intervals with correct empirical coverage rates. But these confidence intervals are relatively wide: Inefficiency is the price that has to be paid for the omnibus nature of the residual subsample bootstrap. Because we prefer to avoid such inefficiencies, we recommend some simple tests to assess the finiteness of the model errors’ fourth moment and the shape of the VaR estimator’s asymptotic distribution. Given the outcomes of these tests, the researcher can choose between one of the conventional methods relying on asymptotic normality of the QML estimators and the ‘omnibus’ subsample bootstrap. We illustrate these tests in the empirical part of the paper, where we estimate VaR for heavy-tailed and skewed stock returns.

The setup of the remainder of this paper is as follows. Section 2 describes how VaR is estimated using the QML estimator of an ARMA-GARCH model. The residual subsample bootstrap is discussed in Section 3. By means of simulation this section evaluates the empirical coverage rates of the residual subsample bootstrap’s confidence intervals. Section 4 discusses alternative methods to estimate confidence intervals for VaR estimates, followed by more simulations. Section 5 uses daily stock returns to estimate VaR and subsequently compares the confidence intervals obtained by the residual subsample bootstrap and the alternative methods. Finally, Section 6 concludes. A separate appendix with supplementary background material is available.
2 Estimation of Value-at-Risk

ARMA-GARCH specifications are location-scale models belonging to the class of time-series models with GARCH errors (McNeil and Frey, 2000; Li et al., 2002). Alternative VaR models have been studied by e.g. Engle and Manganelli (2004) and Koenker and Xiao (2006).

For the sake of exposition we confine the analysis to the ARMA(1,1)-GARCH(1,1) model, but we emphasize that our approach can be applied to ARMA-GARCH models of any order. We thus consider the following ARMA(1,1)-GARCH(1,1) model for $t = 1, \ldots, n$:

$$r_t = \mu_t + \sigma_t z_t;$$

$$\mu_t = \mu + \gamma r_{t-1} + \theta (r_{t-1} - \mu_{t-1});$$

$$\sigma_t^2 = \omega + \alpha (r_{t-1} - \mu_{t-1})^2 + \beta \sigma_{t-1}^2;$$

$$z_t \sim D(0, 1) \text{ iid},$$

where $D(0, 1)$ denotes a distribution with mean 0 and variance 1. Covariance-stationarity is imposed by assuming that $|\gamma| < 1$, $\omega > 0$, $\alpha > 0$, $\beta > 0$, and $\alpha + \beta < 1$. We also make the standard assumption that $E(z_t^2) < \infty$ (Chan et al., 2007).

Given a times series sample r_1, \ldots, r_n, we estimate the ARMA-GARCH model by means of QML, yielding the vector of estimated model parameters $\hat{\lambda} = (\hat{\mu}, \hat{\gamma}, \hat{\theta}, \hat{\omega}, \hat{\alpha}, \hat{\beta})$. We refer to $z_t = (r_t - \mu_t)/\sigma_t$ as the ‘model errors’ or the ‘standardized returns’.

Because our main interest goes to losses, we focus on the left tail of the P-L distribution. We consider the $\varepsilon\%$ one-step ahead conditional VaR, denoted $\xi^\varepsilon_{n|n+1}$ and satisfying

$$P(r_{n+1} < \xi^\varepsilon_{n|n+1} \mid \mathcal{I}_n) = \varepsilon/100,$$

where \mathcal{I}_n denotes all information available up to time n. Conditional on \mathcal{I}_n, the $\varepsilon\%$ quantile of the return distribution equals

$$\xi^\varepsilon_{n|n+1} = \mu_{n+1} + \sigma_{n+1} Q^\varepsilon_z,$$

where Q^γ_z denotes the $\gamma\%$ quantile of the standardized returns z_t. A point estimate of $\xi^\varepsilon_{n|n+1}$ is obtained by replacing μ_{n+1}, σ_{n+1} and Q^ε_z by their forecasted counterparts:

$$\hat{\xi}^\varepsilon_{n|n+1} = \hat{\mu}_{n+1} + \hat{\sigma}_{n+1} \hat{Q}^\varepsilon_z.$$
We consider static forecasts of μ_{n+1} and σ_{n+1}, which are obtained by iterating Equations (2) and (3) using $\hat{\lambda}$ and the observed values of r_1, \ldots, r_n. We estimate the quantiles of the standardized return distribution from the empirical distribution of $\hat{z}_t = (r_t - \hat{\mu}_t) / \hat{\sigma}_t$, yielding the sample quantiles \hat{Q}_z^ℓ (Christoffersen and Gonçalves, 2005; Goa and Song, 2008). Because the resulting VaR estimate is subject to parameter uncertainty via $\hat{\mu}_t, \hat{\sigma}_t$, and \hat{Q}_z^ℓ, it is important to provide a confidence interval in addition to the point estimate.

A well-known limitation of VaR as a risk measure is that it does not satisfy the sub-additivity property. Although other risk measures, such as expected shortfall, may be preferable from a theoretical point of view, VaR remains among the most widely used risk measures. We therefore limit our analysis to VaR, but we emphasize that it is straightforward to extend the approach to alternative risk measures.

3 Residual subsample bootstrap

The goal of this section is to show that the residual subsample bootstrap yields confidence intervals with correct coverage rates for a wide range of ARMA-GARCH specifications, but particularly when the ARMA-GARCH errors lack a finite fourth moment. We start with a description of the residual subsample bootstrap, followed by some simulation results.

3.1 Methodology

Given a possibly dependent sample r_1, \ldots, r_n, Sherman and Carlstein (2004) consider a general statistic $s_n = s_n(r_1, \ldots, r_n)$ as a consistent point estimator of a target parameter s. Their subsample bootstrap assumes that $a_n(s_n - s)$ converges in distribution for $n \to \infty$ and some sequence $a_n \to \infty$, but does neither require knowledge of (a_n) nor of the limiting distribution. The ‘omnibus’ nature of the subsample bootstrap makes this method attractive for confidence interval estimation.

Three minimal conditions for consistency are required, which boil down to (1) the assumption that the limit distribution of $a_n(s_n - s)$ exists, (2) a couple of standard assumptions regarding the subsample size ℓ as a function of the sample size n, and (3) a mixing condition (Sherman
and Carlstein, 2004, Conditions R.1 – R.3, p. 127). In general, non-replacement subsampling methods work because the resulting subsamples are random samples of the true population distribution instead of estimators of the latter distribution. The formal proof that the subsample bootstrap of Sherman and Carlstein (2004) yields asymptotically correct coverage probabilities relies heavily on the related work of Politis and Romano (1994); Bertail et al. (1999) and is not repeated here.

We propose a residual subsample bootstrap for estimating VaR confidence intervals. This bootstrap is an application of the subsample bootstrap of Sherman and Carlstein (2004) to the ARMA-GARCH model residuals \hat{z}_t, which are assumed to be iid. Obviously, the mixing condition is satisfied when the subsample bootstrap is applied to iid residuals. Sherman and Carlstein (2004, p. 128) describe how to adjust their subsample bootstrap to non-dependent data. It is evidently not possible to use all $\binom{n}{\ell}$ subsamples of size ℓ from the n residuals. We therefore randomly draw $B = 1000$ of such subsamples (Politis and Romano, 1994). This choice of B will turn out adequate in Section 3.3, in the sense that a further increase in B has only a minor impact on the confidence intervals.

After fitting an ARMA-GARCH model to the observed sample r_1, \ldots, r_n by means of QML (resulting in the vector of estimated ARMA-GARCH parameters $\hat{\lambda}$), the residual subsample bootstrap consists of the following steps. A random subsample of length ℓ is drawn without replacement from the estimated ARMA-GARCH model’s standardized returns $\hat{z}_1, \ldots, \hat{z}_n$, yielding $\tilde{z}_1, \ldots, \tilde{z}_\ell$. Next, $\hat{\lambda}$ and Equations (1) – (3) are used to recursively generate values $\tilde{r}_1, \ldots, \tilde{r}_\ell$. The bootstrap sample $\tilde{r}_1, \ldots, \tilde{r}_\ell$ is used to estimate the ARMA-GARCH model by means of QML, yielding $\tilde{\lambda}$. Subsequently, $\tilde{\lambda}$ and the observed r_1, \ldots, r_n are used to statically calculate $\tilde{\mu}_n$ and $\tilde{\sigma}_n$ according to Equations (2) – (3). \tilde{Q}_z^ε is defined as the $\varepsilon \%$ sample quantile of $\tilde{z}_t = (r_t - \tilde{\mu}_t) / \tilde{\sigma}_t$ and used as a bootstrap estimator of Q_z^ε. Finally, \tilde{Q}_z^ε is calculated from Equation (7) using $\tilde{\mu}_n, \tilde{\sigma}_n$, and \tilde{Q}_z^ε.

The above steps are repeated B times, resulting in $\tilde{Q}_z^\varepsilon \sim_{\text{null}} \tilde{Q}_z^\varepsilon$. The proposed $x \%$ confidence interval has the form

$$\left[\tilde{Q}_z^{\varepsilon_{\text{null}} - 0.5}, \tilde{Q}_z^{\varepsilon_{\text{null}} + 0.5} \right].$$

(8)
Here Q^y_1 is defined as the empirical $y\%$ quantile of

$$
\widehat{\xi}_{n|n+1,1} - \widehat{\xi}_{n|n+1} \cdots \widehat{\xi}_{n|n+1,B} - \widehat{\xi}_{n|n+1},
$$

with $\widehat{\xi}_{n|n+1}$ as defined in Equation (7). As noted by Sherman and Carlstein (2004), the choice of $\widehat{\xi}_{n|n+1,1}$ in (8) is arbitrary and can be replaced by any $\widehat{\xi}_{n|n+1,i}$, $i=2, \ldots, B$.

Sherman and Carlstein (2004) prove that the coverage rate of the above confidence interval is asymptotically correct. They also show that the width of the confidence interval converges in probability to zero for $n \to \infty$ (under their standard assumptions $\ell \to \infty$, $\ell/n \to 0$ and $a_\ell/a_n \to 0$). Intuitively, a larger subsample size results in bootstrap estimators that are based on more data. Estimators based on more data are subject to less parameter uncertainty, resulting in a smaller expected confidence interval width. On the other hand, with a larger subsample size the subsamples tend to overlap more. At the same time, $\widehat{\xi}_{n|n+1,1}$ and $\widehat{\xi}_{n|n+1}$ become more dependent. These two effects result in a higher coverage probability error. Hence, there is a trade-off between expected confidence interval width and coverage probability error.

On the basis of a simulation study, Sherman and Carlstein (2004) recommend a subsample size between (a constant times) $n^{1/2}$ and (a constant times) $n^{2/3}$. Throughout, we will consider the subsample sizes $\ell_1 = n^{2/3}$, $\ell_2 = (n^{1/2} + n^{2/3})/2$, and $\ell_3 = n^{1/2}$ (all three rounded to the nearest integer).

In the introduction we already mentioned the possible inefficiency of the subsample bootstrap. We can make this statement more formal here. The price that is paid for the omnibus nature of the subsample bootstrap is that the resulting confidence intervals typically have a length of order a_ℓ^{-1} instead of a_n^{-1} (where ℓ denotes the subsample size and n the full sample size). We will come back to this issue in Section 4.1.

3.2 Simulation setup

We start with an ARMA(1,1)-GARCH(1,1) model with parameters $\lambda = (0, 0.5, 0.3, 0.01, 0.1, 0.8)$, reflecting relatively high persistence in both the ARMA and the GARCH part of the model. The distribution of the standardized returns is chosen to be Normal, Student’s t, or skewed Student’s t (Fernandez and Steel, 1998). In all cases the distribution of the standardized returns is scaled.
in such a way that it has mean 0 and variance 1. The skewed Student’s \(t \) distribution has skewness parameter \(\xi = 0.5 \), reflecting negative skewness. The shape parameter (reflecting the number of degrees of freedom) equals \(\nu = 3 \) for both \(t \) distributions. The \(t \) distributions with 3 degrees of freedom have a finite second moment (as required), but infinite fourth moment.

For a given distribution of \(z_t \), we randomly draw values \(z_1, \ldots, z_n \) and recursively simulate \(N = 1000 \) time series \(r_1, \ldots, r_n \) on the basis of Equations (1) – (3). We estimate \(\hat{\xi}_{n|n+1}^e \) as outlined in Section 2 and obtain the associated 90% confidence intervals using the residual subsample bootstrap of Section 3.1. We calculate the true value \(\xi_{n|n+1}^e \) using the true values of \(\mu_t \) and \(\sigma_t \). The true value of \(\xi^e \) is defined as the \(\epsilon \)% sample quantile of \(z_1, \ldots, z_n \). We do not use the true \(\epsilon \)% quantile of \(z_t \)’s distribution (i.e., the Normal, \(t \) or skewed \(t \) distribution), because we want to assess the empirical coverage rate of \(\hat{\xi}_{n|n+1}^e \) exclusive of sampling uncertainty. The empirical coverage probability is calculated as the fraction of simulations for which the true value of \(\xi_{n|n+1}^e \) falls within the estimated confidence interval. We consider the sample sizes \(n = 300, 500, 1000 \) and 5000. The separate appendix with supplementary material provides further computational details.

3.3 Simulation results

The empirical coverage probabilities for \(\epsilon = 5\% \) are displayed in the first panel of Table 1 (captioned ‘Case 1’). This table shows that the subsample bootstrap yields coverage probabilities close to 90% for all distributions.

The coverage rates depend on the selected subsample size, but each of the three chosen subsample sizes results in reasonably accurate coverage rates. For \(n = 1000 \), the subsample sizes \(\ell_1 = 100 \) and \(\ell_2 = 66 \) yield the best coverage rates. For \(n = 5000 \), the most accurate coverage rates are obtained for the subsample sizes \(\ell_2 = 182 \) and \(\ell_3 = 71 \). For \(n = 300; 500 \), we only consider the subsample sizes \(\ell_1 = 45; 65 \) and \(\ell_2 = 31; 43 \). Even for these modest sample sizes, the coverage rates are at least 0.86 with the most favorable subsample size.

We run a wide range of robustness checks based on different ARMA-GARCH specifications, involving lower persistence, positive skewness, and \(t \) distributions with 4 or 5 instead of 3 degrees of freedom. We also estimate 1% and 10% VaR in addition to the 5% VaR. The
Table 1: Empirical coverage probabilities (residual subsample bootstrap)

<table>
<thead>
<tr>
<th></th>
<th>Case 1 (high persistence)</th>
<th>Case 2 (low persistence)</th>
<th>Case 3 (pure GARCH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Normal</td>
<td>(t(3))</td>
</tr>
<tr>
<td>(\ell = \ell_1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>0.88</td>
<td>0.86</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>0.90</td>
<td>0.89</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td>0.90</td>
<td>0.84</td>
</tr>
<tr>
<td>(\ell = \ell_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>0.89</td>
<td>0.87</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>0.91</td>
<td>0.89</td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td>0.91</td>
<td>0.88</td>
</tr>
<tr>
<td>(\ell = \ell_3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td>0.89</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Notes: For different sample sizes \(n\) and distributions of the ARMA(1,1)-GARCH(1,1) errors, this table displays the empirical coverage probabilities of the 90% confidence intervals based on the subsample sizes \(\ell_1 = \sqrt{3}/2\), \(\ell_2 = (\sqrt{1/2} + 3/2)/2\), and \(\ell_3 = \sqrt{1/2}\). Distributions: \(t(3)\), Student’s \(t\) distribution with \(v = 3\) degrees of freedom; \(st(3)\), skewed Student’s \(t\) distribution with \(v = 3\) degrees of freedom and skewness parameter \(\xi\). Case 1 (high persistence): \(\varepsilon = 5\%, \xi = 0.5, (\mu, \gamma, \omega, \alpha, \beta) = (0, 0.5, 0.3, 0.01, 0.1, 0.8)\). Case 2 (low persistence): \(\varepsilon = 1\%, \xi = 1.5, (\mu, \gamma, \omega, \alpha, \beta) = (0, 0.3, 0.1, 0.01, 0.2, 0.4)\). Case 3 (pure GARCH model): \(\varepsilon = 1\%, \xi = 1.5, (\mu, \gamma, \omega, \alpha, \beta) = (0, 0, 0, 1, 0.2, 0.3)\).

Results of these additional simulations show that the subsample bootstrap yields confidence intervals with coverage rates close to the nominal values, regardless of the value of \(\varepsilon\), the ARMA and GARCH persistence, the skewness and the degrees of freedom of the \(t\) distributions.

A selection of additional estimation results is shown in the second panel of Table 1 (captioned ‘Case 2’). The outcomes in this part of Table 1 correspond with \(v = 3, \xi = 1.5\) (instead of \(\xi = 0.5\) as before) and the low-persistence parameter vector \(\lambda = (0, 0.3, 0.1, 0.01, 0.2, 0.4)\). Moreover, in Case 2 the empirical coverage rates apply to the 1% VaR (instead of the 5% VaR as before). Again the residual subsample bootstrap yields empirical coverage probabilities that are close to 90%. With respect to the optimal subsample sizes we find similar results as before.
3.4 Choice of the subsample size

As mentioned in Section 3.1, smaller subsample sizes result in wider expected confidence intervals. For example, in Case 1 the average interval widths over the simulation runs equal 0.35 (ℓ_1), 0.43 (ℓ_2) and 0.72 (ℓ_3) for $n = 5000$ and a skewed Student’s t distribution. Smaller subsample sizes are preferable over larger ones to minimize the coverage probability error. To strike a proper balance between coverage accuracy and interval width, ℓ_2 seems a reasonable choice for the subsample size according to our simulations. Full details about the average confidence interval width in the simulations can be found in the appendix with supplementary material.

The subsample sizes used in this section range between 31 and 292, depending on the sample size. We emphasize that the simulation results presented here have been obtained under ideal circumstances; i.e., in the situation that the true data generating process is also the model that has been estimated. The favorable results obtained for the smallest subsamples may not extend to real-life applications, where there can be some misspecification. Therefore, although we obtain good results even for the smallest subsample sizes, we recommend not to use such small subsamples in practice without further robustness checks.

In particular, we recommend a couple of steps to verify whether the subsample size has not been chosen too small. First, it is important to check whether the quasi-maximum likelihood routine used to estimate the model parameters has truly converged. Second, the average of the VaR estimates over the bootstrap subsamples should at least be close to the estimated VaR based on the observed data. One may even consider putting a lower bound on the subsample size (depending on the number of ARMA-GARCH parameters), but such a lower bound is inevitably somewhat arbitrary.

4 Comparison to alternative methods

Several alternative methods are available for estimating the parameter uncertainty associated with QML-based VaR estimates. Some of these methods, such as the Delta method and the conventional residual bootstrap, rely on asymptotic normality of the QML estimator. The Normal approximation method proposed by Chan et al. (2007) does not assume asymptotic normality
of the QML estimator, but makes other assumptions. This section compares the performance of the residual subsample bootstrap to each of these methods.

4.1 Methods based on asymptotic normality of the QML estimator

The methods that we consider in this section are (1) the Delta method, (2) a parametric bootstrap from the presumed asymptotic distribution of the estimated QML parameters, and (3) the residual bootstrap (Efron and Tibshirani, 1993). We refer to the appendix for the details of these methods. We use the simulation design of Section 3.2 and 3.3 (Cases 1 and 2) and apply each of the aforementioned methods to estimate confidence intervals for the QML-based VaR estimates.

The empirical coverage probabilities for Cases 1 and 2 are displayed in the first and second part of Table 2. As expected, the alternative methods have coverage probabilities close to 90% when the standardized returns have a Normal distribution. Larger differences in coverage probabilities arise for the Student’s t distributions. For these distributions the conventional methods yield empirical coverage rates that are substantially below 90%. This holds particularly true for the skewed Student’s t distribution, for which the empirical coverage rates range between 0.60 ($n = 300$, parametric bootstrap) and 0.79 ($n = 5000$, Delta method).

Although the Delta method seems to have a relatively high coverage rate of 0.84 in Case 1 for $n = 5000$ and a Student’s t distribution, its one-sided coverage rates are less favorable. The empirical left (right) coverage probability is defined as the fraction of simulated samples for which the true VaR exceeds (is less than) the lower (upper) bound of the estimated confidence interval. The one-sided coverage rates should equal 0.95 in case of a 90% confidence interval, but are 0.86 and 0.99. For the residual subsample bootstrap with (non-optimal) subsample size ℓ_1, we also establish a two-sided coverage rate of 0.84, but the one-sided rates are more accurate (0.90 and 0.94, respectively) than with the Delta method. To save space we do not report the empirical one-sided coverage rates in Tables 1 and 2, but they are available in the appendix with supplementary material. In general, the conventional methods’ right coverage rates are fairly close to 95%, whereas the left coverage rates fall below the nominal level. This means that the conventional methods are not able to accurately estimate the VaR distribution’s left tail. By
Table 2: Empirical coverage probabilities (conventional methods)

<table>
<thead>
<tr>
<th>Case 1 (high persistence)</th>
<th>Case 2 (low persistence)</th>
<th>Case 3 (pure GARCH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Normal</td>
<td>$t(3)$</td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0.93</td>
<td>0.76</td>
</tr>
<tr>
<td>500</td>
<td>0.91</td>
<td>0.78</td>
</tr>
<tr>
<td>1000</td>
<td>0.92</td>
<td>0.80</td>
</tr>
<tr>
<td>5000</td>
<td>0.93</td>
<td>0.84</td>
</tr>
<tr>
<td>PB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0.91</td>
<td>0.70</td>
</tr>
<tr>
<td>500</td>
<td>0.90</td>
<td>0.72</td>
</tr>
<tr>
<td>1000</td>
<td>0.90</td>
<td>0.75</td>
</tr>
<tr>
<td>5000</td>
<td>0.89</td>
<td>0.78</td>
</tr>
<tr>
<td>RB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0.90</td>
<td>0.75</td>
</tr>
<tr>
<td>500</td>
<td>0.88</td>
<td>0.76</td>
</tr>
<tr>
<td>1000</td>
<td>0.89</td>
<td>0.77</td>
</tr>
<tr>
<td>5000</td>
<td>0.88</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Notes: For different sample sizes (n) and distributions of the ARMA(1,1)-GARCH(1,1) errors, this table displays the empirical coverage probabilities of the 90% confidence intervals based on various methods. Distributions: $t(3)$, Student’s t distribution with $\nu = 3$ degrees of freedom; $st(3)$: skewed Student’s t distribution with $\nu = 3$ degrees of freedom and skewness parameter ξ. Case 1 (high persistence): $\varepsilon = 5\%$, $\xi = 0.5$, $(\mu, \gamma, \theta, \omega, \alpha, \beta) = (0, 0.5, 0.3, 0.01, 0.1, 0.8)$. Case 2 (low persistence): $\varepsilon = 1\%$, $\xi = 1.5$, $(\mu, \gamma, \theta, \omega, \alpha, \beta) = (0, 0.3, 0.1, 0.01, 0.2, 0.4)$. Case 3 (pure GARCH model): $\varepsilon = 1\%$, $\xi = 1.5$, $(\mu, \gamma, \theta, \omega, \alpha, \beta) = (0, 0, 0.1, 0.2, 0.3)$. Methods: Delta method (DM), parametric bootstrap (PB), and residual bootstrap (RB).

In contrast, the residual subsample bootstrap succeeds in accurately estimating both the left and the right tail of the VaR distribution.

With Normally distributed residuals, the residual subsample bootstrap has good coverage rates. However, in this case the approach is inefficient because the confidence intervals are much wider than with the other methods. For example, for $n = 300$ and a Normal distribution the average interval width equals 0.52 in Case 2 (using the residual subsample bootstrap with subsample size ℓ_1), whereas the average interval width based on the Delta method is only 0.12.
For $n = 5000$, the average widths equal 0.03 (Delta method) and 0.13 (residual subsample bootstrap with subsample size ℓ_2). Hence, when the true distribution of the residuals is Normal, the subsample bootstrap is inefficient and it would be better to use one of the conventional methods to generate confidence intervals. Although the true distribution of the model errors is usually unknown, there are statistical tests to assess the finiteness of the model errors and the shape of the VaR estimator’s asymptotic distribution. We will come back to this issue in Section 5.

4.2 Normal approximation method

Also Chan et al. (2007) describe a method to obtain confidence intervals for VaR estimates that does not rely on asymptotic normality of the QML estimator. Their VaR estimator is slightly different from the one proposed in Section 2 and obtained using the two-step procedure of McNeil and Frey (2000). First, the parameters of the pure GARCH model are estimated by means of QML, after which the Hill estimator (Hill, 1975) is used to estimate the tail index of the standardized return distribution. The $\epsilon\%$ VaR estimate is obtained using Equation (6), where Q^ϵ is based on the Hill estimator and the standardized returns. In practice, the difference between the two quantiles turns out negligible; see also Section 5.4. We refer to the appendix for the technical details of the approach proposed by Chan et al. (2007).

Chan et al. (2007) use the asymptotic normality of the Hill estimator to construct a confidence interval for their VaR estimator. We will refer to this approach in the sequel as the ‘Normal approximation’ method. By construction, this approach is only valid for small values of ϵ, which means that it only works well for $\epsilon = 1\%$ in our setting. One of the crucial assumptions underlying this method is that the Hill estimator is asymptotically unbiased. More details about the Normal approximation approach and its assumptions are given in the appendix. Besides the Normal approximation method, Chan et al. (2007) also propose data tilting to obtain confidence intervals (Hall and Yao, 2003; Peng and Qi, 2006). Because the confidence intervals based on the Normal approximation are shown to be superior in terms of empirical coverage rates, we confine our analysis to the latter method.

The choice of the ‘tail sample size’ in the calculation of the Hill estimator is crucial, yet
for finite samples it is not clear how to choose it optimally; see for example Huisman et al. (2001) for a discussion. In the simulations we avoid this problem by plotting the coverage rates of the associated 90% confidence intervals as a function of the chosen tail sample size. However, we emphasize that the highest coverage rates found are only feasible when the optimal tail sample size is known upfront, which is usually not the case in practice.

We follow Chan et al. (2007) by considering a pure GARCH model with parameters $\lambda = (0, 0, 0, 1, 0.2, 0.3)$, which we refer to as Case 3. We confine the simulations to the 1% VaR for the reason given above and set the parameters of the t distributions to $\nu = 3$ and $\xi = 1.5$.

Figure 1: Empirical coverage rates (Normal approximation method)
(positive skewness). For these parameter settings the third part of Table 1 (captioned ‘Case 3’) provides confidence intervals based on the subsample bootstrap. The third part of Table 2 (captioned ‘Case 3’) reports the confidence intervals based on the conventional methods.

We first consider the Normal approximation method. The 90% confidence intervals based on the latter approach depend strongly on the chosen tail sample size as becomes apparent from Figure 1 (where the horizontal lines indicate the nominal coverage rate of 0.9). For the Normal distribution there exists a tail sample size for which the coverage rate is virtually equal to 0.9. However, for the skewed t distribution the optimal coverage rate falls below this level regardless of the sample and tail sample sizes. Moreover, for this distribution the bias in the coverage rates increases with the sample size. For $n = 300$, the highest empirical coverage rate is 0.82, but for $n = 5000$ it is only 0.69 for any tail sample size larger than 10. Also for the non-skewed t distribution the coverage rates do not exceed 0.8 in case of the largest sample size. We explain the bias in the coverage rates from the VaR estimator’s asymptotic bias that is ignored in the construction of the confidence interval. Another problem with the Hill estimator is that the estimated tail index should be larger than 2 to ensure $\mathbf{E}(z_t^2) < \infty$. For some tail sample sizes this restriction is not fulfilled in certain simulation runs.

As before, the confidence intervals based on the residual subsample bootstrap have empirical coverage rates close to the nominal level regardless of the error distribution, whereas the conventional methods fail in case of a (skewed) t distribution. For example, for $n = 300$ and the skewed t distribution, the conventional methods’ empirical coverage rates range between 0.61 and 0.68. For $n = 5000$, the coverage rates are somewhat better (0.70 – 0.76), but still far from nominal.

5 Empirical application

In an application involving real-life data, this section compares the confidence intervals based on the residual subsample bootstrap with the confidence intervals based on the conventional methods and the Normal approximation method.
5.1 Data

We consider continuously compounded daily returns for the stock SBM Offshore (SBMO), listed on the NYSE Euronext Amsterdam. We calculate these returns from the stock prices during the period January 1, 2007 – April 24, 2013. The data have been downloaded from Datastream, where their mnemonic is H:SBMO. This results in a sample of 1647 daily returns.

Table 3 reports sample statistics for the full sample. The returns have a huge sample kurtosis (15.5) and a negative sample skewness (−0.54). The presence of GARCH effects is visible from Figure 2, where high (absolute) returns tend to be followed by more high returns and low (absolute) returns tend to be followed by more low returns. This figure illustrates that the SBMO stock has experienced several substantial price drops since the start of US subprime crisis in 2007 and the subsequent global financial crisis that commenced with the fall of Lehman Brothers in September 2008.
5.2 Model

We apply a rolling-window analysis that starts with the period January 2, 2007 – December 30, 2011 and ends with the period April 24, 2008 – April 23, 2013. For each of the 343 resulting rolling-windows periods (consisting of \(n = 1304 \) observations each), we estimate a GARCH(1,1) model with constant expected returns (i.e., \(\mu_t = \mu \)) by means of QML.

Table 3: Sample statistics for daily returns on the SBMO stock (January 2, 2007 – April 24, 2013)

<table>
<thead>
<tr>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>-0.04</td>
</tr>
<tr>
<td>std.dev.</td>
<td>2.73</td>
</tr>
<tr>
<td>skewness</td>
<td>-0.54</td>
</tr>
<tr>
<td>kurtosis</td>
<td>15.52</td>
</tr>
<tr>
<td>1% quantile</td>
<td>-6.88</td>
</tr>
<tr>
<td>5% quantile</td>
<td>-4.15</td>
</tr>
<tr>
<td>10% quantile</td>
<td>-2.80</td>
</tr>
<tr>
<td>50% quantile</td>
<td>0.00</td>
</tr>
<tr>
<td>90% quantile</td>
<td>2.67</td>
</tr>
<tr>
<td>95% quantile</td>
<td>3.72</td>
</tr>
<tr>
<td>99% quantile</td>
<td>7.01</td>
</tr>
</tbody>
</table>

The parameter estimates for the first rolling-window period are displayed in Table 4. As usual, the sandwich estimator of Bollerslev and Wooldridge (1992) has been used to estimate the corresponding covariance matrix, although the resulting standard errors rely on the possibly incorrect assumption of asymptotic normality of the QML estimator. As often found for daily returns, the volatility persistence is close to unity. The GARCH residuals’ lack of normality becomes apparent from a Normal QQ-plot (available in the appendix), which shows that both tails of the residual distribution are relatively heavy.

Several tests are available to assess the goodness-of-fit of an estimated ARMA-GARCH model. The Ljung-Box test applied to the standardized returns is often used to test the null hypothesis of no autocorrelation. Application of the same test to the squared standardized returns yields a test for remaining GARCH effects (McLeod and Li, 1983). Furthermore, the Bera-Jarque test applied to the standardized returns provides a way to test for normality. However,
Table 4: QML estimation results for GARCH(1,1) model

<table>
<thead>
<tr>
<th></th>
<th>coeff.</th>
<th>std.dev.</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>0.125</td>
<td>0.069</td>
<td>1.830</td>
<td>0.067</td>
</tr>
<tr>
<td>ω</td>
<td>0.183</td>
<td>0.128</td>
<td>1.432</td>
<td>0.152</td>
</tr>
<tr>
<td>α</td>
<td>0.137</td>
<td>0.073</td>
<td>1.861</td>
<td>0.063</td>
</tr>
<tr>
<td>β</td>
<td>0.847</td>
<td>0.071</td>
<td>11.907</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Notes: A GARCH(1,1) model with constant expected returns μ has been applied to the returns (in %) on the SBMO stock during the first rolling-window period (January 20, 2007 – December 30, 2011). The standard errors, t-values and p-values are based on the robust covariance matrix (Bollerslev and Wooldridge, 1992).

when the fourth moment of the standardized results is not finite, these tests are no longer valid, because they all involve the fourth moment of the standardized residuals. Although the tests can always be performed from a technical point of view, their outcomes may be uninformative or even misleading; the residuals’ sample fourth moment can show very erratic behavior when the fourth moment does not exist.

Based on the foregoing, it is evident that our analysis could benefit from assessing the finiteness of the standardized returns’ fourth moment and the shape of the VaR estimator’s asymptotic distribution. Such an assessment will not only be informative about the validity of the above tests, but will also provides guidance in deciding whether or not it is really necessary to apply the subsample bootstrap. With no evidence against the VaR estimator’s asymptotic normality, efficiency considerations make one of the conventional methods more attractive.

5.3 Finite fourth moments and asymptotic normality

An informal way of checking the finiteness of the fourth moment is by plotting the GARCH residuals’ sample fourth moment over an expanding-window sample; i.e., by subsequently increasing the number of observations used to calculate the sample fourth moment. This visual approach was first suggested by Mandelbrot (1963); see Cont (2001). When the sample fourth moment exists, the graph of the sample fourth moment as a function of the number of observations will almost surely converge to the theoretical moment; otherwise, it will not converge or show erratic behavior. A related visual test has been proposed by Embrechts et al. (1997, p. 309-
For iid random variables X_1, \ldots, X_n, a finite p-th moment is equivalent to $R_n(p) \xrightarrow{a.s.} 0$, where $R_n = (|X_1|^p + \ldots, |X_n|^p)/\max(|X_1|^p, \ldots, |X_n|^p)$. The strong convergence can be visually assessed by plotting $R_n(p)$ as a function of n over an expanding window. Two recent tests for finite moments have been proposed by Fedotenkov (2013a,b). These nonparametric tests are based on the strong law of large numbers that holds when the moment does not exist (Derman and Robbins, 1955) and can be used to test for the existence of finite moments of arbitrary order. The strong consistency of the QML estimators (Francq and Zakoïan, 2004) ensures that these four tests also apply to the ARMA-GARCH model residuals. A totally different way of testing the finiteness of the fourth moment is by estimating the tail index γ of the model residuals using the Hill estimator. A distribution with tail index $\gamma > k$ has a finite k-th moment. Under certain assumptions the asymptotic distribution of $\hat{\gamma}^{-1}$ is known (Haeusler and Teugels, 1985) and permits the construction of an asymptotic confidence interval. Similarly to the Normal approximation method of Chan et al. (2007), such a confidence interval is based on the assumption that the asymptotic bias of the Hill estimator is zero.

We apply each of the five tests to the first rolling-window sample to investigate the existence of a finite fourth moment; the results for the other rolling-window periods are similar and omitted to save space. Both the Mandelbrot and the $R_n(4)$ plots show extremely unstable behavior for growing n; see Figures 3(a) and (b). The first of the two nonparametric tests proposed by Fedotenkov (2013a,b) is based on a subsample bootstrap and yields a test statistic equal to 0.078. When the fourth moment does not exist, the test converges almost surely to 0. The second test statistic converges to 1 in the absence of a finite fourth moment and has a value of 0.923 when applied to the GARCH residuals. Both test statistics have values that are close to the values that arise when the fourth moment is not finite. Moreover, both tests are very robust to the choice of the underlying parameters, such as the size of the subsample that is required in the first test. For the first test we select, in the notation of Fedotenkov (2013a), $\xi = 0.99$ and a subsample size of $0.4\log (n)$. For the second test we take, in the notation of Fedotenkov (2013b), $g(n) = \sqrt{\log (\log n)}$. The Hill estimator (with tail sample size $k_1 = [1.5(\log n)^2] = 77$) equals $\hat{\gamma}^{-1} = 0.35$ with 95% asymptotic confidence interval [0.28, 0.41], which does not contain values less than 0.25. We therefore reject the null hypothesis.
Figure 3: Visual tests for the finiteness of the GARCH-model error’s fourth moment (January 2, 2007 – December 30, 2011)
$H_0 : \gamma^{-1} < 0.25$ in favor of the alternative hypothesis $H_1 : \gamma^{-1} \geq 0.25$. The selected tail sample size k_1 turned out to work well in our simulations with sample sizes less than 5000. It is also the sample size recommended by Chan et al. (2007).

In the absence of a finite fourth moment asymptotic normality of the QML estimator is still possible (Hall and Yao, 2003). As a robustness check, we therefore investigate the asymptotic normality of the VaR estimator by means of the replicating histograms of Sherman and Carlstein (1996). This approach employs a (residual) subsample bootstrap to assess the shape of a statistic’s sampling distribution. The replicating histogram is strongly consistent under weak regularity conditions, which are virtually the same as the ones described in Section 3.1. In our setting, the replicating histogram boils down to a histogram (or kernel density estimate) of the residual subsample replicates $\tilde{e}_{n|n+1,1}, \ldots, \tilde{e}_{n|n+1,B}$.

Figure 4 shows a kernel-smoothed version of the replicating histogram for the VaR estimate based on the first rolling-window period (for $B = 10000$ and $\ell_1 = 119$). As explained by Sherman and Carlstein (1996), only the shape of the replicating histogram is informative (e.g., symmetry versus skewness). For this reason the axes in Figure 4 have been left blank. The replicating histogram shows a leptokurtic and negatively skewed distribution. With other subsample sizes we find comparable non-Normal shapes. These results extend to the other rolling-window samples.

All five moment tests cast doubt on the finiteness of the GARCH errors’ fourth moment, while the replicating histogram indicates that the VaR estimator is likely to have a non-Normal sampling distribution. We thus conclude that we most likely need the subsample bootstrap to obtain confidence intervals with correct coverage. The results also imply that we cannot use the usual tests to assess the goodness-of-fit of the GARCH model. The next section will instead backtest the VaR estimates as a way of indirect goodness-of-fit testing.

5.4 VaR estimates

For each of the 343 rolling-window periods we estimate the 1% one-day ahead VaR using the method of Section 2, as well as the approach of Chan et al. (2007). For the latter method we employ again a tail sample size of $k_1 = 77$ to calculate the Hill estimator.
Notes: We used the R-routine `bkde` in the KernSmooth library to create the kernel density plot, with the bandwidth determined by the `dpik` command from the same library. The selected bandwidth was $h = 0.0012$.

The estimates based on the method of Chan et al. (2007) are marginally different from the VaR estimates obtained with the method of Section 2. The latter estimates base \hat{Q}_z^Q in Equation (7) on the empirical quantile of the standardized returns, whereas the VaR estimates underlying the Normal approximation method derive \hat{Q}_z^Q from the Hill estimator.

We count the number of times the equity returns fall below the 1% VaR point estimates (a ‘violation’). For the method of Section 2 and that of Chan et al. (2007), the 343 rolling-window estimates result in four violations (which are all in 2012: January 11 and 24, April 10, and November 15).

5.5 Backtesting

Formal tests of VaR estimates’ unconditional coverage have been suggested by Kupiec (1995) and Christoffersen (1998). Obviously, these tests are based on a different definition of ‘coverage’ as used in the previous sections, where the coverage rates of confidence intervals were analyzed. As noticed by Escanciano and Olmo (2010), the asymptotic distribution of the above tests is based on the assumption that the VaR estimate is equal to the true VaR (i.e., that there
is neither estimation nor model uncertainty). The two test statistics considered by Escanciano and Olmo (2010) permit a test for correct unconditional coverage and a joint test for independence of violations and correct unconditional coverage, respectively. The authors derive the test statistics’ asymptotic distribution in the presence of estimation and model uncertainty. They consider different forecasting schemes, including the rolling-window scheme that we also use. They show that the assumption of neither model nor parameter uncertainty can result in misleading test outcomes. Their adjusted test statistics are based on the assumption that the VaR model’s parameter vector can be estimated by a \sqrt{n}-consistent estimator (where n denotes the sample size). They are not applicable to our setting, where the rate of convergence is unknown. However, assuming that the data have been generated by a pure GARCH(1,1) model (i.e., we assume a lack of model uncertainty), we can use the residual subsample bootstrap to derive confidence intervals for the two test statistics used by Escanciano and Olmo (2010). The resulting confidence intervals can be used to construct tests that explicitly account for parameter uncertainty.

Throughout, we only consider the VaR estimates based on the method of Section 2. On the basis of the test statistics’ confidence intervals, obtained with the subsample bootstrap, we fail to reject the null hypothesis of correct unconditional coverage and the joint hypothesis of independence of violations and correct unconditional coverage. We use the test statistics $\sum_{t=n-R+1}^{n} I_{t,e}/R$ (unconditional coverage) and $\sum_{t=n-R+2}^{n} I_{t,e} I_{I-1,e}/R$ (independence of violations) for $R = 343$ (the number of rolling-window samples). Here $I_{t,e}$ is an indicator variable indicating whether r_t exceeds the corresponding rolling-window VaR estimate $\widehat{\xi}_{t-1,e}$. The test statistics have values 0.0117 and 0.0000 and the confidence intervals based on the residual subsample bootstrap with $B = 10000$ are [-0.0187, 0.0221] and [-0.0058, 0.0029]. The choice for a pure GARCH(1,1) model thus seems reasonable.

5.6 Confidence intervals

We use the conventional method, the Normal approximation method, and the subsample bootstrap to obtain confidence intervals. Figures 5(a) – (c) show the rolling-window point estimates of the one-day ahead 1% VaR, together with a 90% point-wise confidence interval based on
Figure 5: Rolling-window estimates of one-day ahead 1% VaR with 90% point-wise confidence interval

Notes: The solid blue line in these two figures shows the rolling-window estimates of the one-day ahead 1% VaR (i.e., \(\hat{\gamma}_t \)). The black solid line indicates the returns on the SBMO stock at day \(t+1 \) (i.e., \(r_{t+1} \)), allowing for a comparison between realized returns \(r_{t+1} \) and \(\hat{\gamma}_t \). The dashed red lines correspond to the upper and lower bounds of the associated 90% confidence intervals.
Figure 6: **Rolling-window estimates of one-day ahead 1% VaR with 90% point-wise confidence interval (continued)**

(a) **Normal approximation**

(b) **Subsample bootstrap**

Notes: The solid blue line in these two figures shows the rolling-window estimates of the one-day ahead 1% VaR (i.e., $\hat{\gamma}_{t+1}$). The black solid line indicates the returns on the SBMO stock at day $t + 1$ (i.e., r_{t+1}). The dashed red lines correspond to the upper and lower bounds of the associated 90% confidence intervals.
the Delta method, the parametric bootstrap and the residual bootstrap, respectively. Also the realized returns on the SBMO stock are displayed in the figure. In Figures 6(a) and (b) the same is done the Normal approximation method and the residual subsample bootstrap (with $B = 10000$ and subsample size $\ell_1 = 119$), respectively.

The confidence intervals based on the parametric and residual bootstraps and the Normal approximation method indicate reasonable accuracy of the VaR point estimates. By contrast, the Delta method yields relatively wide intervals for some rolling-window intervals; often even wider than those based on the residual subsample bootstrap.

Because the GARCH errors are likely to lack a finite fourth moment (thus casting severe doubt on the asymptotic normality of the QML estimator), we prefer the confidence intervals based on the residual subsample bootstrap over the conventional methods. Furthermore, the Hill estimator’s potential bias, in addition to its sensitivity to the choice of the tail sample size, make us prefer the residual subsample bootstrap over the Normal approximation method.

For risk management purposes, it is important to realize that the VaR estimates’ distribution is subject to substantial estimation uncertainty as shown in Figure 6(b). For example, when a VaR estimate is used to set a capital reserve, additional capital on top of the VaR estimate may be required to deal with the underlying estimation uncertainty.

6 Conclusions

When the fourth moment of the ARMA-GARCH model errors is not finite, the asymptotic distribution of the QML estimator may not be normal and the conventional methods for obtaining confidence intervals for VaR estimates are likely to fail. There are ways to obtain confidence intervals under additional distributional assumptions, but such methods incur the risk of misspecification.

We propose a residual subsample bootstrap to obtain confidence intervals for QML-based ARMA-GARCH VaR estimates. This approach imposes minimal regularity conditions and allows for heavy-tailed or skewed distributions, with or without a finite fourth moment. Simulations show that the residual subsample bootstrap, based on rule-of-thumb subsample sizes,
yields confidence intervals with correct coverage for a wide range of specifications, but parti-
cularly when conventional methods fail due to a lack of asymptotic normality of the QML
estimators. The residual subsample bootstrap also performs well in comparison with the No-
mal approximation approach; another method that does not rely on the asymptotic normality of
the QML estimator. The latter method turns out sensitive to the tail sample size used to calculate
the Hill estimator and can only be used to obtain extreme quantiles. Furthermore, the Normal
approximation method assumes that the Hill estimator is unbiased, which does not have to be
the case in practice.

The practical relevance of the residual subsample bootstrap becomes apparent when we
estimate VaR for heavy-tailed and skewed stock returns. Several tests find evidence against
a finite fourth moment of the GARCH errors. We therefore resort to the residual subsample
bootstrap to obtain confidence intervals and show that the confidence intervals based on the
latter approach differ substantially from those obtained with the conventional methods and the
Normal approximation method.

Although the residual subsample bootstrap is also consistent when the ARMA-GARCH
model errors have a finite fourth moment, application of the subsample bootstrap in such a case
will yield relatively wide confidence intervals. This is the price that has to be paid for the om-
nibus nature of the residual subsample bootstrap. To avoid such inefficiencies, we recommend
some simple tests to assess the finiteness of the model errors’ fourth moment and the shape of
the VaR estimator’s asymptotic distribution.

The approach proposed in this study can be extended to multi-period VaR estimates and
other risk measures such as expected shortfall. We leave this as a topic for future research.

Acknowledgements

The author is grateful to Edward Carlstein, Ruud Koning, Michael Sherman, and Tom Wans-
beek for useful comments and suggestions. The usual disclaimer applies.
References

Embrechts, P., Klüppelberg, C. and Mikosh, T. (1997), Modelling Extremal Events: For Insur-

Knight, K. (1989), ‘On the bootstrap of the sample mean in the infinite variance case’, *Annals
of Statistics 17, 1168–1175.

