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Abstract

Present-day healthcare witnesses a growing demand for coordination of patient care. Coordination

is needed especially in those cases in which hospitals have structured healthcare into specialty-

oriented units, while a substantial portion of patient care is not limited to single units. From a logistic

point of view, this multi-disciplinary patient care creates a tension between controlling the hospital’s

units, and the need for a control of the patient flow between units. A possible solution is the creation

of new units in which different specialties work together for specific groups of patients. A first step in

this solution is to identify the salient patient groups in need of multi-disciplinary care. Grouping

techniques seem to offer a solution. However, most grouping approaches in medicine are driven by a

search for pathophysiological homogeneity. In this paper, we present an alternative logistic-driven

grouping approach.

The starting point of our approach is a database with medical cases for 3603 patients with

peripheral arterial vascular (PAV) diseases. For these medical cases, six basic logistic variables (such

as the number of visits to different specialist) are selected. Using these logistic variables, clustering

techniques are used to group the medical cases in logistically homogeneous groups. In our approach,

the quality of the resulting grouping is not measured by statistical significance, but by (i) the

usefulness of the grouping for the creation of new multi-disciplinary units; (ii) how well patients can

be selected for treatment in the new units. Given a priori knowledge of a patient (e.g. age, diagnosis),

machine learning techniques are employed to induce rules that can be used for the selection of the

patients eligible for treatment in the new units. In the paper, we describe the results of the above-

proposed methodology for patients with PAV diseases. Two groupings and the accompanied

classification rule sets are presented. One grouping is based on all the logistic variables, and another
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0933-3657/02/$ – see front matter # 2002 Elsevier Science B.V. All rights reserved.

PII: S 0 9 3 3 - 3 6 5 7 ( 0 2 ) 0 0 0 5 4 - 4



grouping is based on two latent factors found by applying factor analysis. On the basis of the

experimental results, we can conclude that it is possible to search for medical logistic homogenous

groups (i) that can be characterized by rules based on the aggregated logistic variables; (ii) for which

we can formulate rules to predict to which cluster new patients belong.
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1. Introduction

In The Netherlands, as in many other countries in the world, there is a markedly growing

demand for the coordination of patient care. Strong emphasis is placed on medical and

organizational efficiency and effectiveness to control national healthcare expenditures.

One of the recognized efficiency problem is that sub-optimally coordinated care

often results in redundant and overlapping diagnostic procedures performed by medical

specialists from different specialties within the same hospital. Coordination becomes

especially important when hospitals structure their healthcare into specialty-oriented units,

and care for patients is not constrained within single units. From a logistic point of view,

this creates a tension between the control over the units, and the coordination needed

among units to control the patient flow.

The total flow of the patients in a hospital can be divided into mono- and multi-

disciplinary patients. Multi-disciplinary patients require the involvement of different

specialties for their medical treatment. Naturally, these patients require more efforts

regarding the coordination of care. A possible solution is the creation of new multi-

disciplinary units, in which different specialties coordinate the treatment of specific groups

of patients. A first step in this solution is to identify salient patients groups in need of multi-

disciplinary care. Furthermore, adequate selection criteria must exist to select new patients

for treatment in a multi-disciplinary unit. As we will demonstrate, grouping and classifica-

tion techniques seem to offer a solution.

In the medical domain, various grouping and classification techniques are developed and

used [3,6]. They can be categorized by their purposes as utilization, reimbursement, quality

assurance and management applications [12]. For example, Fetter’s Diagnostic Related

Groups (DRGs) [6] and their refinements [7] are homogeneous in terms of use of resources,

but the elements within a single group show rather high variability and low homogeneity

from the underlying process point of view [16]. Starting from the original DRG concept,

researchers and professionals organized themselves into a joint network for providing

efficient methods for health management at different levels of care under the name of

case-mix classification systems [3]. However, none of the existing classification systems

are homogeneous from the underlying logistic process point of view [16]. A solution will

be to consider a logistic classification system that results in a higher logistic homogeneity

of groups.

In this paper, we investigate the possibility of building an alternative, logistic-driven

grouping and classification system for medical multi-disciplinary patients with the aid of

machine learning techniques.
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In the medical domain, machine learning methods are used successfully for diagnostic,

prognostic, screening monitoring, therapy support purposes [8,9], but also for overall

patient management tasks like planning and scheduling [11,13].

In the present work, we combine unsupervised and supervised machine learning

techniques to achieve our three-fold objectives:

(i) First, we want to be able to classify patients in groups that are homogeneous from

the underlying process point of view. For this purpose, we operationalize the concept

of logistic complexity into different aggregate logistic variables that will be used

further in clustering. Subsequently, we characterize the obtained clusters by rules

based on the aggregated logistic variables.

(ii) Second, we aim at developing a rule predictive model that can assign a new patient

on the basis of some given personal information (age, gender, chronic diagnosis),

to the most suitable logistic group instantly. Thus, the a posteriori information

encapsulated in the aggregated logistic variables will be used for the development of

homogeneous logistic clusters; conversely, a priori personal information will be used

to assign new patient as soon as possible to a cluster.

(iii) Third, we illustrate how machine learning (data mining) techniques can aid in this

process.

We plan to assess the quality of the logistic clusters considering a combination of

different criteria. First, we want our obtained clusters to be logistically homogeneous.

Second, both the cluster characterization rules and the predictive rules should make sense

from the medical point of view; thus we are interested on the intelligibility and usefulness

of our rules.

The structure of the rest of the paper is in line with the general knowledge discovery

framework as proposed by Cios et al. [4]. In Section 2, we describe the problem domain.

We provide a medically-oriented description of the multi-disciplinary patients investigated

in this study, all treated for peripheral arterial vascular (PAV) diseases. From the logistic

point of view, we then elaborate on the importance of the underlying processes of medical

multi-disciplinary patients, particularly when one aims to optimize the patient throughput.

In Section 3, we describe the collection and preparation of data and the operationalization

of the logistic complexity concept. Section 4 describes the clustering experiments for

finding logistically homogeneous groups. Our approach of developing predictive models

is presented in Section 5. In Section 6, we discuss the results of the used data mining

techniques. Finally, in Section 7 we formulate the conclusions on the basis of our current

findings, and describe some future research.

2. Understanding the problem domain

2.1. The medical problem domain

Patients who require the involvement of different specialties are hardly a new phenom-

enon in healthcare. In general, one can say that because of the increasing specialization of

doctors within the hospital and an aging population this group of patients is increasing.
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Recent studies in The Netherlands show that approximately 65% of the patients visiting a

hospital are multi-disciplinary [17]. Consequently, certain special arrangements have

emerged for these patients. For instance, some hospitals have special centers in which

different specialties work together on backbone problems.

Patients with PAV diseases (peripheral refers to the entire vascular system except for the

heart and brain) are a good example of multi-disciplinary patients. Surgery, internal

medicine, dermatology, neurology and cardiology are the specialties most frequented

involved by the treatment of these patients. Alarmingly, a recent study of The Netherlands

Heart Foundation shows that the care for these patients leaves much to be desired, because

it is too dispersed: it is difficult for doctors in primary healthcare to know what specialty to

refer to; knowledge within the hospital is dispersed; there is a lack of within-hospital

cooperation; and there are impediments to scientific research.

Arguably, one important reason for these problems is that patients with PAV diseases are

grouped on the basis of medical homogeneity, in the hope that this will result in logistically

homogenous groups. However, PAV are a variety of diseases, both acute and chronic, life-

threatening, or invalidating. Table 1 illustrates that describing these diseases as a group is

complex. One complaint can have many different causes, one cause can have different

manifestations and there is complexity in cause and effect between the pathologies.

One of the consequences of the complexity of expressing these patients in medical terms

is that the homogeneity of the underlying treatment processes of these patients is low. This

leads us to the logistic perspective of our approach.

2.2. The logistic problem domain

In this subsection, we expound our view on the logistics and subsequently we set up our

logistic goals. Logistics is defined as ‘‘the coordination of supply, production and

distribution process in manufacturing systems to achieve a specific delivery flexibility

and delivery reliability at minimum costs’’ [1,15]. Translated to healthcare organizations,

it comprises the design, planning, implementation and control of coordination mechanisms

between patient flows and diagnostic and therapeutic activities in health service organiza-

tions. The goal is to maximize output/throughput with available resources, taking

into account different requirements for delivery flexibility (e.g. differentiating between

Table 1

Patients with PAV diseases expressed in medical terms

Pathologies Intermediate

stage

Manifestation Measurable and

visible symptoms/

complaints

Irreversible

disorders and

diseases

Arteriosclerosis Plaque thrombus Ischaemia Pain in legs Impair of organs,

muscles and arteries

Disturbed

composition

of the blood

Plaque thrombus Ischaemia Pain in chest Impair of organs,

muscles and arteries

Disturbed

metabolism

High concentration

of glucose in blood

Insufficient supply

of glucose in cells

Fatigued,

perspiration, tremble

Disorder of arteries

affection of nerves
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elective/appointment, semi-urgent, and urgent delivery) and acceptable standards for

delivery reliability (e.g. determining limits on waiting list length and waiting times)

and acceptable medical outcomes [14,17].

First of all, a production control approach to hospitals requires knowledge about

processes. However, the main characteristic of hospital products is that they are organized

by specialty: internal medicine, cardiology, pulmonology, etc. The physicians belonging to

a specialty are specialized in treating complaints in a well-defined part of the human body;

often there are even sub-specializations within a specialty, for instance diabetics, enter-

ology and oncology as specializations within internal medicine. However, from a logistic

point of view we are looking for homogeneity of the underlying processes. With this we

mean the sequence, timing and execution of activities for patients by the hospital staff

(specialists, nurses and paramedics). Distinguishing logistically homogeneous groups

appears to be important, because every logistic group can require its own optimal control

system. Subsequently, in the following sections we will investigate whether such logistic

groups can be found in reality.

3. Data collection and preparation

The two logistic characteristics to typify a production situation, or in this case the care

process of a patient are (i) the complexity of the care process; (ii) the routing variability of

the care process. In this paper, we concentrate on the first type, i.e. the complexity of the

care process of a patient. Keep in mind, we are referring to logistic complexity, which can

be something completely different from medical complexity. Before we come to the part of

operationalizing the characteristics, a remark on the subject of data gathering in hospitals is

in place. The degree of detail in the majority of hospital registrations is high, but the

information is normally hidden in different databases. Relevant patient information can be

found in clinical databases, outpatient databases, laboratory databases, etc. When all the

patient information is gathered, we have the hospital history of the patient.

When planning to do quantitative investigations based on real-data, one has to be aware

that ‘‘some critical steps should be followed’’ [5]. What we plan to do is cluster analysis in

order to find the logistically homogeneous groups. Therefore, we concentrate on the

following aspects: (i) data selection; (ii) the attributes (or variables) that should be recorded

(measured); (iii) how to deal with missing data.

3.1. Data selection

The first step for data selection is to establish the criteria on which the data will be

chosen. Our target is to investigate PAV patients, because they are a good example of

complex multi-disciplinary patients. Therefore, we need to specify what we mean with a

PAV patient. For this purpose, interviews were held with specialists from the source

hospitals, which revealed that certain types of diagnoses point to our PAV patients. These

diagnosis resulted in three lists: (a) a list with degenerative underlying chronic diseases; (b)

a list with PAV diseases; (c) a list with diagnosis related with chronic or PAV diseases. We

selected the whole population of patients who have at least one diagnosis from list (a) or (b)
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from the Elisabeth Hospital located in Tilburg, The Netherlands. Note, that we work further

with the complete population of PAV patients and not with a sample. The degenerative

underlying chronic diseases from list (a) (e.g. diabetes) are the cause of a lot of PAV

diseases, therefore together with diagnoses from list (b) they have been considered as

selection criteria. For patients with diagnoses from list (a) or (b), all records related to visits

in different departments of the hospital were extracted. These records contain information

mainly related to:

� personal characteristics: age, gender, address, date of birth and date of death if the

patient is deceased, etc.;

� characteristics of the policlinic visit: specialist, date, referral date, referring specialist (if

the general practitioner requests the visit or another specialist from the hospital),

urgency, etc.;

� characteristics of the clinical admission: specialist, date, diagnosis (one main diagnosis

and up to eight possible secondary diagnoses), treatment, referring specialist (if the

general practitioner requests the admission or another specialist from the hospital),

urgency or planned admission, etc.;

� radiology, functional investigations information, other investigations.

These information fields were used to build a time-ordered history for 3603 patients.

Please note that our purpose is not to analyze the underlying processes in the patient’s

history. For instance, given a patient who breaks a leg in February, and undergoes an

appendectomy in August, we find both events in the patient’s history, but we do not want to

consider the two facts as one medical case. To this end, we established, with the aid of

medical specialists, a set of heuristic rules for splitting the patient’s history into separate

medical cases. We considered only those medical cases that contain at least one clinical

admission (because only in case of clinical admission we have recorded the diagnosis). The

end result was a database with 4395 records as medical cases of the 3603 considered

patients.

3.2. Choice of the variables

As stated before, the goal of our clustering is to find clusters of cases that are

homogeneous related to the complexity of the care process. However, the literature does

not offer a unique measurement of care process complexity. Based on existing logistic

literature concerning complexity, we therefore operationalized the concept of complexity

of the underlying process by distinguishing six aggregated logistic variables, each to be

investigated as a potential (partial) measurement of care process complexity. We build the

six aggregated logistic variables as described below. To illustrate the construction of the

logistic variables, we used the following abbreviations: I, internal medicine; C, cardiology;

D, dermatology.

1. C_dif_visit: the total number of involved specialties within the medical case. The

assumption is that the more specialties are involved, the more complex the medical

case is. Suppose that a medical case contains a sequence of visited specialties as

follows: I-I-C-I-D-I. Thus, the logistic variable C_dif_visit ¼ 3.
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2. C_shift: number of shifts within the medical case, counted by the total number of

visits to specialties within the medical case. The assumption is that the more a patient

has to go from one specialty to another, counted by the total number of visits, the more

complex the medical case.

As an illustration, let us have a look to the following example. Consider that patient

A has a medical case that involves the following sequence of visited specialties: I-I-C-

I-D-I; C_shift will be computed as the number of shifts divided with the total number

of visits, within the medical case, i.e. C_shiftA ¼ 4/6 ¼ 0.6. Consider now that patient

B has a medical case where the specialties are in the sequence I-I-C-I-I-I-I-D-I-I-I-I-I.

Thus, C_shiftB ¼ 4/13 ¼ 0.3. Obviously, patient A is more complex than patient B,

although both A and B ‘‘changed’’ specialties four times. Thus, the more a patient has

to go from one specialty to another, counted by the total number of visits within the

medical case, the more complex the medical case.

3. N_visit_mc: number of visits within the medical case per time-scale. The assumption

is that the more visits per time-scale, the more complex the medical case. For example,

consider that patient A visited three specialties in 4 weeks, whereas patient B visited

three specialties in 12 weeks. Subsequently, N_visit_mcA ¼ 3/4 ¼ 0.7 and

N_visit_mcB ¼ 3/12 ¼ 0.2, consequently patient A is more complex than patient B.

4. N_shift_mc: number of shifts within the medical case per time-scale, counted by the

total number of visits to specialties. The assumption is that the more shifts per time-

scale, the more complex the medical case. For example, consider that patient A has a

medical case that involves the following sequence of visited specialties in 14 weeks: I-

I-C-I-D-I. Patient B visited the following specialties in 12 weeks: I-I-C-I-I-I-I-D-I-I-I-

I-I. Hence, N_shift_mcA ¼ 0.6/4 ¼ 0.15, N_shift_mcB ¼ 0.3/12 ¼ 0.025 and

consequently, patient A is more complex than patient B.

5. M_shift_mth: mean of number of shifts (counted by the total number of visits to

specialties) per month. Within a medical case, for each month the number of shifts (by

the total number of visits to specialties) is calculated, next the mean is computed. The

higher the mean, the higher the complexity of the medical case.

Suppose that patients A and B have the sequences of visited specialties in the months

January, February, March and April as shown in Table 2. Because M_shift_mthA ¼ 0.3

and M_shift_mthB ¼ 0.2, patient A is more complex than patient B.

6. Var_shift_mth: variance of number of shifts (counted by the total number of visits to

specialties) per month. Within a medical case, for each month the number of shifts

(counted by the total number of visits to specialties) is calculated, next the variance is

computed. The higher the variance, the higher the complexity of the medical case. As

we can see from Table 2, patient A is more complex than patient B.

Table 2

Example of visited specialties in 4 months (January, February, March and April) for patients A and B and the

corresponding mean and variance

Patient January February March April Mean Variance

A I-I-D I-I-I – I-D-C Mean (1/3, 0, 2/3) ¼ 0.3 Var (1/3, 0, 2/3) ¼ 0.11

B I-I-I C-I I-I I-I-D-I-I Mean (0, 1/2, 0, 2/5) ¼ 0.2 Var (0, 1/2, 0, 2/5) ¼ 0.06
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The six variables described above are used for developing logistically homogeneous

groups within the population of patients with PAV diseases. If relevant clusters of patients

can be found, these groups can be used in two ways: (i) to predict as early as possible to

what cluster an individual patient belongs; (ii) to develop different logistic control systems

for each homogeneous group. In this paper, we concentrate only on the first way of

usage, namely to predict the cluster to which a patient is likely to be assigned. In the next

section, we describe the clustering experiments in which we tried to find these logistically

homogeneous groups. In Section 5, we try to develop predictive models based on the already

developed logistically homogeneous groups.

3.3. Missing data

The existence of missing data should be carefully investigated in case of performing

clustering analysis, because the possible missing data should be replaced with some

estimates [5]. However, in our case we plan to cluster aggregated variables. The aggregation

method chosen to operationalize the logistic complexity into logistic aggregate variables is

filtering out (smoothing) missing values. Therefore, possible missing data that exist in the

medical case log (our raw material) will not significantly affect the clustering results.

4. Development of logistic patient groups

After the selection and preparation of the data, our next step is the clustering of our

patients with PAV diseases into, from the logistic point of view, homogenous groups that

can be characterized by rules based on the aggregated logistic variables. In Section 5, we

try to search for predictive rules that can be used to predict to which cluster new patients

belong. First we turn to clustering.

4.1. Clustering experiments

Clustering techniques are used to group data into groups that are not known beforehand.

As clustering method we chose two-step method, available in the Clementine 6.0.1 SPSS

product [2]. The goal of this clustering technique is to (i) minimize variability within

clusters; (ii) maximize the variability between clusters. The first step makes a single pass

through the data, during which it compresses the raw input data into a manageable set of

sub-clusters. The second step uses a hierarchical clustering method to progressively merge

the sub-clusters into increasingly larger clusters, without requiring another pass through

the data [2].

We chose this type of clustering technique because it shows two types of advantages.

First, it is not necessary to decide beforehand the numbers of clusters. Second, compared to

other techniques, it is faster for large datasets and a large number of variables. The

technique seems therefore robust in case of a larger dataset and/or more variables.

For building the logistic patient groups, we ran two series of experiments: clustering

experiments based on (i) all the six logistic variables built so far; (ii) factors extracted from

the initial six logistic variables. For the later set of experiments, we use the factors
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extracted with a principal component analysis technique, available also in the Clementine

software.

4.2. Clustering experiment involving all logistic variables

In our first clustering experiment, all the logistic variables are used. We let the two-step

method to search the number of clusters automatically. The results are given in Table 3.

The two-step method resulted in three clusters, with 2330, 127 and 1938 items. In order to

choose the valid homogeneous clusters, we have to compare the standard deviation of each

cluster with the standard deviation of the data not yet clustered. The cluster-1 and cluster-3

seem to show generally higher degrees of homogeneity compared with unclustered data. If

we look for example in Table 3 at standard deviation values for variable C_dif_visit, both

cluster-1 and cluster-3 have lower values than total (0:758 < 1:58 and 1:515 < 1:58). In the

following analyses, we therefore concentrate on cluster-1 and cluster-3.

We identified that it was possible to build two reliable clusters. But how can we interpret

them? Different methods are available to characterize the clusters found by a clustering

technique. One way to look at them is to investigate their means. However, in this paper we

choose to use Quinlan’s induction algorithm C4.5 rules [10] to characterize the clusters.

Seven rules are induced to characterize cluster-1 and 12 rules for cluster-3. Examples of the

induced rules are given in Table 4. For each rule, we have information about its coverage

Table 3

Means and standard deviations for logistic variables in case of not clustered data (‘total’) and for the clustering

model LOG_VAR_3 with three clusters

Logistic variables Total Clustering model LOG_VAR_3

Cluster-1 (2330a) Cluster-2 (127a) Cluster-3 (1938a)

C_dif_visit

Mean 3.51 2.566 3.976 4.608

S.D. 1.58 0.758 2.419 1.515

C_shift

Mean 0.243 0.092 0.43 0.202

S.D. 0.217 0.139 0.215 0.138

N_visit_mc

Mean 0.085 0.046 1.373 0.048

S.D. 0.286 0.074 0.997 0.045

N_shift_mc

Mean 0.002 0.0 0.063 0.002

S.D. 0.026 0.002 0.142 0.004

M_shift_mth

Mean 0.087 0.013 0.077 0.177

S.D. 0.113 0.025 0.13 0.112

Var_shift_mth

Mean 0.029 0.005 0.006 0.06

S.D. 0.038 0.011 0.012 0.039

a Number of items in each cluster.

L. Mǎruşter et al. / Artificial Intelligence in Medicine 26 (2002) 87–107 95



and the reliability. For instance, if we look at Rule #1 for cluster-1, there are 1943 examples

covered by the IF-part of this rule, and 99.9% of them actually belong to cluster-1.

Inspecting the induced rules, the two clusters can be characterized as follows: cluster-1

includes ‘‘moderately complex’’ PAV patients, while cluster-3 covers the ‘‘complex’’

examples. As general characteristics, patients from the ‘‘moderately complex’’ cluster

have visited up to three different specialists and show lower values for the shift

characteristics, while patients from cluster ‘‘complex’’ have visited more than three

different specialists and the values for shift features are higher. Cluster-2 seems to contain

the 127 cases that cannot be grouped in cluster-1 or cluster-3. Two interesting rules

(displayed in Table 5) are induced to characterize cluster-2.

The patients in cluster-2 show a higher number of visits counted by the duration of

the medical case (variable N_visit_mc) than patients from cluster-1 and cluster-3, while the

number of different specialists C_dif_spm is not so high. These rules give rise to the

impression that patients who repeatedly visit one specialist are in this cluster. Inspection of

the data reveals that these patients frequent the dialysis department. Because this is not a

PAV-related cluster, we excluded this cluster from our further analysis.

4.3. Clustering experiment involving two latent factors

In the previous subsection, we applied the clustering technique directly to the six logistic

variables. In this section, we first use a principal component analysis extraction method to

Table 4

Some examples of the rules that characterize the different clusters based on all logistic variables

Rule number Rule description Coverage Reliability (%)

Rule #1, cluster-1 IF C_dif_spm � 3 and
C_shift � 0.296 and

1943 99.9

N_visit_mc � 0.506 and
M_shift_mth � 0.101 and
Var_shift_mth � 0.042

THEN cluster-1
Rule #11, cluster-3 IF C_dif_spm > 3 and

C_shift > 0.304 and
1303 97.9

N_visit_mc � 0.688
THEN cluster-3

Table 5

Some examples of rules that characterize cluster-2 of the clustering model based on all logistic variables

Rule number Rule description Coverage Reliability (%)

Rule #1, cluster-2 IF N_visit_mc > 0.688 87 97.8

THEN cluster-2
Rule #2, cluster-2 IF C_dif_spm � 6 and

N_visit_mc > 0.506
22 91.7

M_shift_mth > 0.074
THEN cluster-2
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check for possible latent factors. We then apply our clustering technique on these latent

factors. Table 6 displays the results of the principal component analysis.

The total variance explained by this model is 74%. Inspecting the two extracted factors,

the first factor can be observed showing high correlations with logistic variables C_shift,

M_shift_mth, Var_shift_mth and C_dif_spm and very small correlations with the rest.

The second factor show a high correlation with N_visits_mc and N_shift_mc and a low

correlation with the other variables.

The factors are difficult to interpret; a hypothesis could be that these two factors

represent two facets of complexity. Factor-1 represents somehow the ‘‘complexity due to

shifts’’ and Factor-2 ‘‘complexity in time span’’. Thus, we can conclude that it is

worthwhile to search for clusters based on these two factors. Table 7 shows the clustering

model based on the extracted factors.

Similar to the previous experiments, by comparing the standard deviation of cluster-1

and cluster-3 with the standard deviation of data not yet clustered, cluster-1 and cluster-3

appear to have a higher homogeneity than the unclustered data. Just as a remark, the values

of Factor-1 and Factor-2 for standard deviation and for the mean are 1 respectively 0 in case

of unclustered data (‘total’ column in Table 7), because the principal component analysis

extracts latent factors by standardizing the values of the input variables.

Again, we choose to use Quinlan’s C4.5 rules induction algorithm to characterize the

clusters. Twelve rules are found for cluster-1 and 16 for cluster-3, with confidences ranging

Table 6

Factor loadings for two latent factors extracted from the original six logistic variables

Component

Factor-1 Factor-2

C_dif_spm 0.791 �0.027

C_shift 0.908 �0.056

N_visit_mc 0.044 0.890

N_shift_mc 0.056 0.894

M_shift_mth 0.848 0.035

Var_shift_mth 0.829 �0.084

Table 7

Means and standard deviations for the two extracted latent factors, in case of not clustered data and in case of

clustering model FACTOR_3 with three clusters

Total Clustering model FACTOR_3

cluster-1 (2936a) cluster-2 (154a) cluster-3 (1305a)

Factor-1

Mean 0 0.552 0.202 1.267

S.D. 1 0.547 0.81 0.565

Factor-2

Mean 0 0.133 3.266 0.087

S.D. 1 0.136 4.11 0.163

a Number of items in each cluster.

L. Mǎruşter et al. / Artificial Intelligence in Medicine 26 (2002) 87–107 97



between 85 and 75%. Inspecting these rules (Table 8), we arrive at the similar conclusions:

there is a cluster for ‘‘moderately complex’’ PAV patients and one for ‘‘complex’’ ones.

The rules look relatively similar, although there are some differences: (i) not surpris-

ingly, more rules are based on factors; (ii) for each cluster, there is one rule with a very low

coverage and also low confidence; we can interpret it as two rules which try to explain few

cases which behave as exceptions. If we remove the two rules for ‘‘exceptional’’ cases for

each cluster, we end up with 11 rules for cluster-1 and 15 rules for cluster-3, with

confidence over 93 and 83%, respectively. Moreover, these clusters can be characterized by

rules on which basis one cluster contains ‘‘moderately complex’’ PAV patients, and another

one ‘‘complex’’ PAV patients, complexity being understood from the logistic point of view.

The third cluster contains patients not especially suitable for our purposes: their logistic

behaviour is determined only secondarily by PAV diseases.

The conclusion is that in both situations, (i) clustering based on all logistic variables; (ii)

clustering based on two extracted logistic variables, we can obtain homogeneous logistic

clusters. The question that we are trying to answer further is: can we use these clusters for

prediction purposes? In the next section, we compare the two clusters for their capabilities

to predict to which cluster a new individual patient belongs.

5. Development of predictive models

In the previous section, we saw that both clustering methods result in logistic

homogeneous clusters. However, if it is not possible to predict to which cluster a

new individual patient belongs, the clustering is of no use. In this section, we investigate

if it is possible to use some a priori personal patient information such as age, gender and

previous diagnoses, to predict what kind of logistic behaviour a patient newly entered in

the process will have.

Apart from age and gender, a representation of the patient must be generated on the basis

of his or her medical history, in order to be assigned to a particular cluster. Knowing to

Table 8

Some examples of the rules that characterize the different clusters based on two latent factors

Rule number Rule description Coverage Reliability (%)

Rule #1, cluster-1 IF C_dif_spm � 4 and
C_shift � 0.467 and

2165 100

N_visit_mc � 0.492 and
M_shift_mth � 0.086 and
Var_shift_mth � 0.03

THEN cluster-1
Rule #2, cluster-2 IF N_visit_mc > 0.604 97 85.9

THEN cluster-2
Rule #1, cluster-3 IF C_dif_spm > 4 and

C_shift > 0.32 and
716 99.9

Var_shift_mth > 0.027
THEN cluster-3
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which cluster a patient is likely to belong may provide immediate indications on how to

plan future activities, capacity planning, etc.

In the following paragraphs, we describe how we develop predictive models that can be

used to assign PAV patients to a certain logistic cluster, based on a priori information.

A priori information include age, gender, primary diagnosis, and potential secondary

diagnoses. Age and gender are known for the first time when a patient is registered in the

hospital and he/she receives a registration card. Primary diagnoses and potential secondary

diagnoses are known only when the patient is clinically admitted. When a patient has a

clinical admission, one mandatory primary diagnosis will be recorded and up to eight

possible secondary diagnoses. For example, a patient can be admitted in the hospital

because of acute gangrene as primary diagnosis; in the same time, this person has a chronic

disease, namely arteriosclerosis as secondary diagnosis.

For developing predictive models, we use as learning material our database with 4395

medical cases, where the input attributes are age, gender and diagnosis. From the previous

clustering phase, we already know for each record (i.e. medical case) to which cluster it

belongs, thus each medical case is labeled as ‘‘complex’’ or ‘‘moderately complex’’. Note

that it is possible for a patient to have one medical case that is ‘‘moderate complex’’ and

another medical case that is ‘‘complex’’. In other words, the learning material is composed

from records representing histories of medical cases rather than histories of patients.

Two series of learning experiments were performed for each clustering model, i.e. for the

model based on all logistic variables LOG_VAR_3 and for the model based on two latent

factors, FACTOR_3:

(i) Experiment ‘‘all diagnoses’’ with 60 input features: age, gender, total number of

diagnoses and 57 possible diagnoses. Each diagnosis is represented as a separate

binary feature; if a certain diagnosis is present in the medical case, the corresponding

feature is marked with a ‘‘1’’ and with ‘‘0’’ if it is not present.

(ii) Experiment ‘‘chronic diagnoses’’ with 11 input features: age, gender, total number of

diagnoses and eight diagnosis classes. For this experiment, we created eight

diagnosis classes, in which we included all chronic diagnoses: (1) diabetes, (2)

hypertension, (3) arteriosclerosis, (4) hyperhomocysteinemia, (5) hyperlipidaemia

(including hypercholesterolaemia), (6) coagulation disorders, (7) heart problems and

(8) (chronic) renal failure.

5.1. Experiment ‘‘all diagnoses’’

In this first type of experiment, we consider 60 input features: age, gender, total number

of diagnoses and 57 diagnoses. Each of the 57 diagnoses is taken as a separate feature.

Here, we are interested to obtain predictive rules in which we can have combinations of

age, gender, total number of diagnoses and individual diagnosis. The class (or output)

feature is the cluster label, namely ‘‘complex’’ or ‘‘moderately complex’’. The experiment

consists in training and afterwards testing the model, which will result in some rules of a

certain quality. The training database contains the following fields:

Patient ID: number field.

Age: number field.
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Gender: flag field (1 for male, 2 for female).

C_sec_diag: number field. Represents total number of diagnoses).

d���: flag field. This flag will be set to ‘‘1’’ if the patient has the diagnosis coded ‘‘���’’

within the medical case and to ‘‘0’’ if not. For example, if the patient has diabetes,

which is coded ‘‘250’’, the feature d250 will be marked with ‘‘1’’.

5.2. Experiment ‘‘chronic diagnoses’’

This second type of experiment consists in 11 input features, namely age, gender, total

number of diagnoses and eight groups of diagnoses. We consider the six chronic diagnoses

(diabetes, hypertension, arteriosclerosis, hyperhomocysteinemia, hyperlipidaemia, coa-

gulation disorders), heart problems and (chronic) renal failure, each one as separate

features. Here we want to test whether specific chronic diseases and/or heart family of

diseases can provide qualitatively predictive rules. Also, in this type of experiment, the

class (or output) feature is the cluster label, namely ‘‘complex’’ or ‘‘moderately complex’’.

The database contains the following fields:

Patient ID: number field.

Age: number field.

Gender: flag field (1 for male, 2 for female).

C_sec_diag: number field. Represents total number of diagnoses.

g250, g401, g440, . . .: flag fields. The diagnoses marked in these fields are all six

chronic diagnoses. For example, g250 stands for diabetes, g401 for hypertension and

g440 for arteriosclerosis. These flags will be set to ‘‘1’’ if the patient has within the

medical case that specific diagnosis and to ‘‘0’’ if not.

hart: flag field. This flag will be set to ‘‘1’’ if the patient has within the medical case at

least one diagnosis which relate to heart, and to ‘‘0’’ if not.

g585: flag field. This flag will be set to ‘‘1’’ if the patient has within the medical case

the diagnosis coded 585 (renal failure), and to ‘‘0’’ if not.

We run in total four learning series: one experiment ‘‘all diagnoses’’ with clustering

model LOG_VAR_3, one experiment ‘‘all diagnoses’’ with clustering model FACTOR_3,

one experiment ‘‘chronic diagnoses’’ with clustering model LOG_VAR_3 and one

experiment ‘‘chronic diagnoses’’ with clustering model FACTOR_3.

The quality of the predictive models is assessed by 10-fold cross-validation. This

technique estimates the generalizing capacities of a learned model in the absence of

a holdout test sample. Cross-validation is performed by dividing the training data

into 10 subsets and then learning 10 models with each 10% subset held out in turn. The

average accuracy of the models on the 10-holdout samples is used as an estimate of

the accuracy of the model on new, ‘‘unseen’’ data. The cross-validation performance on

test material for experiments ‘‘all diagnoses’’ and ‘‘chronic disease’’ with the two

clustering models developed up to now, LOG_VAR_3 and FACTOR_3, is given in

Table 9.

Because we want to compare the prediction performance of the models that we built so

far, we repeat the development of other two alternative clustering models, one based on all

logistic variables and one on the two extracted factors. We use the same two-step clustering
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method, but we do not let the method find the number of clusters automatically. Rather, we

fix the number of final clusters at 2.

The resulting model LOG_VAR_2 consists of two clusters: cluster-1 that contains the

same cases (2330) like the ‘‘moderately complex’’ cluster from clustering model

LOG_VAR_3, and cluster-2 which joins the rest of the cases (2065). In the same manner,

model FACTOR_2 yields two clusters: cluster-1 that contains the same cases (2936) as

cluster ‘‘moderately complex’’ from clustering model FACTOR_3, and cluster-2 which

joins the rest of the cases (1459). The performance of these two models is also shown

in Table 9.

Of interest are models that show a higher performance than the baseline performance

(the percentage of the most common class; in our case, in model LOG_VAR_2, cluster-1

comprises 53% of all elements; if the model always predict cluster-1, a performance level

of 53% would be attained). As can be seen from Table 9, the predictive model with the

highest gain in performance concerns the experiment with ‘‘chronic diagnoses’’, where

the cases are labeled based on clusters developed with model LOG_VAR_2 (all logistic

variables and two clusters). Its overall performance is 63; 10% higher than baseline class

guessing. The predictive models based on clustering models LOG_VAR_2 and LOG_-

VAR_3 also show a certain gain over the baseline performance. In contrast, the clusters

based on the two latent factors show very small gain over the baseline performance, if

any.

To illustrate what is learned, we concentrate on the rules of the predictive models from

experiment ‘‘chronic diagnoses’’ in case of LOG_VAR_3. They are presented in Table 10.

The five rules developed for cluster-1 can be shared in two categories: the first three,

Rule #1, Rule #2 and Rule #3, which show a low support (5, 16 and 6 respectively) and a

high confidence (85.7, 83.3 and 75%) and Rule #4 and Rule #5, with a high support (2197

and 3098) and low confidence (62.4 and 61.1%). Because we are interested not only in

having high performance (rules with high confidence), but certainty also in wide-coverage

general rules that may provide new useful knowledge, we inspect rules Rule #4 and Rule #5

Table 9

Performance of predictive models from experiments ‘‘all diagnoses’’ and ‘‘chronic diagnoses’’, of clustering

models based on all logistic variables (LOG_VAR_2 and LOG_VAR_3) and on two latent factors (FACTOR_2

and FACTOR_3)

Model No. of elements

in each cluster

No. of

clusters

Baseline

performance

All diagnoses Chronic diagnosis

Performance Gain Performance Gain

LOG_VAR_2 cluster-1: 2330 (53.01%);

cluster-2: 2065 (46.99%)

2 53 61.2 8.2 63.3 10.3

FACTOR_2 cluster-1: 2936 (66.80%);

cluster-2: 1459 (33.20%)

2 67 68.5 1.5 69.4 2.7

LOG_VAR_3 cluster-1: 2330 (53.01%);

cluster-2: 127 (2.89%);

cluster-3: 1938 (44.10%)

3 53 58.6 5.6 60.5 7.5

FACTOR_3 cluster-1: 2936 (66.80%);

cluster-2: 154 (3.51%);

cluster-3: 1305 (29.69%)

3 67 64.1 – 64.6 –
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more closely. Using the same reasoning for the rules induced to capture cluster-3, we focus

on Rule #2, Rule #3 and Rule #4.

We recall that this experiment type ‘‘chronic diagnoses’’ focus on a priori character-

istics, i.e. age, gender, total number of diagnoses and eight groups of diagnoses: diabetes

(g250), hypertension (g401), arteriosclerosis (g440), hyperhomocysteinemia (g2704),

hyperlipidaemia (g272), coagulation disorders (g286), heart problems (hart) and (chronic)

renal failure (g585).

The wide-coverage rules tell us that if a patient has three or less diagnoses, and does not

have diagnosis g585 (renal failure), it is likely that he/she will be in cluster-1: a

‘‘moderately complex’’ patient. In contrast, if a patient has diagnosis g585 (renal failure),

it will be a ‘‘complex’’ patient. Also, according to Rule #4 for cluster-3, if the number of

diagnoses is higher than 2, it will estimated to be a ‘‘complex’’ patient. If the patient does

Table 10

Predictive rules from experiment ‘‘chronic diagnoses’’ with clustering model LOG_VAR_3

Rule number Rule description Coverage Reliability (%)

Rule #1, cluster-1 IF C_sec_diag > 2 and
C_sec_diag � 3 and g250 ¼ F

5 85.7

and g272 ¼ T
THEN cluster-1

Rule #2, cluster-1 IF Age > 80 and
C_sec_diag � 3 and g401 ¼ T

16 83.3

THEN cluster-1
Rule #3, cluster-1 IF Age > 91 and C_sec_diag >

2 and C_sec_diag � 3
6 75.0

THEN cluster-1
Rule #4, cluster-1 IF Age � 72 and C_sec_diag

� 3 and g250 ¼ F and g585 ¼ F
2197 62.4

THEN cluster-1
Rule #5, cluster-1 IF C_sec_diag � 2 and

g585 ¼ F
3098 61.1

THEN cluster-1
Rule #1, cluster-3 IF Age > 65 and Age � 68

and C_sec_diag > 2 and
11 92.3

C_sec_diag � 3 and
g272 ¼ F and g401 ¼ T
and hart ¼ F

THEN cluster-3
Rule #2, cluster-3 IF g585 ¼ T 93 65.3

THEN cluster-3
Rule #3, cluster-3 IF Age � 72 and Gender ¼ 2

and C_sec_diag > 2 and
53 61.8

C_sec_diag � 3 and
g272 ¼ F and g401 ¼ F and
hart ¼ F and g585 ¼ F

THEN cluster-3
Rule #4, cluster-3 IF C_sec_diag > 2 1259 60.1

THEN cluster-3
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Table 11

Predictive rules from experiment ‘‘chronic diagnoses’’ with clustering model LOG_VAR_3

Rule number Rule description Coverage Reliability (%)

Rule #1, cluster-1 IF d585 ¼ 0 and d2507 ¼ 0 and
d429 ¼ 0 and C_sec_diag � 2 and

98 61.2

d286 ¼ 0 and d250 ¼ 1 and
d7802 ¼ 0 and d440 ¼ 0 and
d4359 ¼ 0 and
d2508 ¼ 0 and Age > 55

THEN cluster-1
Rule #5, cluster-1 IF d585 ¼ 0 and d2507 ¼ 0 and

d429 ¼ 0 and C_sec_diag � 2 and
2383 63.8

d286 ¼ 0 and d250 ¼ 0 and
d425 ¼ 0 and d997 ¼ 0 and
d446 ¼ 0 and
d413 ¼ 0 and d428 ¼ 0 and
d426 ¼ 0 and d441 ¼ 0 and
d443 ¼ 0 and
d707 ¼ 0 and d2508 ¼ 0

THEN cluster-1
Rule #7, cluster-1 IF d585 ¼ 0 and d2507 ¼ 0 and

d429 ¼ 0 and
51 68.6

C_sec_diag > 2 and
C_sec_diag � 5 and
d447 ¼ 0 and d2508 ¼ 0 and
d443 ¼ 0 and
d403 ¼ 0 and d437 ¼ 0 and
d446 ¼ 0 and d9972 ¼ 0 and
d357 ¼ 0 and
d250 ¼ 0 and d426 ¼ 0 and
d410 ¼ 1 and d4331 ¼ 0 and
d436 ¼ 0 and
d707 ¼ 0 and d413 ¼ 0 and
d7854 ¼ 0 and d997 ¼ 0 and
d412 ¼ 0 and
d998 ¼ 0

THEN cluster-1
Rule #9, cluster-1 IF d585 ¼ 0 and d2507 ¼ 0 and

d429 ¼ 0 and C_sec_diag > 2 and
56 62.5

d447 ¼ 0 and d2508 ¼ 0 and
d443 ¼ 0 and d403 ¼ 0 and
d437 ¼ 0 and
d446 ¼ 0 and d9972 ¼ 0 and
d357 ¼ 0 and d250 ¼ 0 and
d426 ¼ 0 and
d410 ¼ 0 and d427 ¼ 0 and
d459 ¼ 0 and d5571 ¼ 0 and
d442 ¼ 0 and
d997 ¼ 0 and d424 ¼ 0 and
d425 ¼ 0 and d428 ¼ 0 and
d4359 ¼ 0 and
d2720 ¼ 0 and d413 ¼ 0 and
d412 ¼ 0 and d444 ¼ 0
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not have diagnosis g585, g401, g272 and ‘‘hart’’ (heart) problems, has in total three

diagnoses and is a woman, then she has some chance to be a ‘‘complex’’ patient.

However, the rules provided by this predictive model provide restricted information,

regarding only the chronic and heart problems. What if a patient does not suffer from such

diseases? More detailed rules, at the level of individual diagnoses are provided by the

predictive model from experiment ‘‘all diagnoses’’ with LOG_VAR_3. A selection of the

rules with support higher than 20 instances and confidence higher than 0.6 is shown in

Table 11.

Among the rules induced for cluster-1, we inspect Rule #1: if a patient has diagnosis

d250 (diabetes) (and does not have the other eight specified diagnoses), has two or less than

Table 11 (Continued )

Rule number Rule description Coverage Reliability (%)

THEN cluster-1
Rule #1, cluster-3 IF d585 ¼ 1 and d442 ¼ 0 and

d429 ¼ 0 and d444 ¼ 0
74 70.3

THEN cluster-3
Rule #2, cluster-3 IF d585 ¼ 0 and d2507 ¼ 1 and

C_sec_diag � 7 and d414 ¼ 0 and
53 79.2

d250 ¼ 1
THEN cluster-3

Rule #8, cluster-3 IF d585 ¼ 0 and d2507 ¼ 0 and
d429 ¼ 0 and C_sec_diag > 2 and

47 78.7

d447 ¼ 0 and d2508 ¼ 1
THEN cluster-3

Rule #13, cluster-3 IF d585 ¼ 0 and d2507 ¼ 0 and
d429 ¼ 0 and C_sec_diag > 3 and

47 91.5

d447 ¼ 0 and d2508 ¼ 0 and
d443 ¼ 0 and d403 ¼ 0 and
d437 ¼ 0 and
d446 ¼ 0 and d9972 ¼ 0 and
d357 ¼ 0 and d250 ¼ 0 and
d426 ¼ 0 and
d410 ¼ 0 and d427 ¼ 1 and
d4331 ¼ 0

THEN cluster-3
Rule #14, cluster-3 IF d585 ¼ 0 and d2507 ¼ 0 and

d429 ¼ 0 and C_sec_diag > 2 and
66 62.1

d447 ¼ 0 and d2508 ¼ 0 and
d443 ¼ 0 and d403 ¼ 0 and
d437 ¼ 0 and
d446 ¼ 0 and d9972 ¼ 0 and
d357 ¼ 0 and d250 ¼ 0 and
d426 ¼ 0 and
d410 ¼ 0 and d427 ¼ 0 and
d459 ¼ 0 and d5571 ¼ 0 and
d442 ¼ 0 and
d997 ¼ 1 and d412 ¼ 0

THEN cluster-3
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two diagnoses and age more than 55, he or she is likely to be a ‘‘moderately complex’’

patient. Looking at Rule #2 for cluster-3, we can notice that if a patient has in addition to

diagnosis d250 the diagnosis d2507 (diabetic foot), it will be assigned to cluster-3, which is

the cluster for ‘‘complex’’ patients. Subsequently, the number of diagnoses will be higher,

which is also according to the rule (number of diagnoses C_sec_diag � 7). Thus, our model

contains a rule that is able to ‘‘send’’ the patient to the right cluster, when an additional

diagnosis becomes known.

Another meaningful rule is Rule #1 for cluster-3, which says that if a patient has

diagnosis d585 (renal failure) and do not have the other three specified diagnoses, he/she

will be a ‘‘complex’’ patient. Thus, this rule provides a way to distinguish the patients who

need dialysis and it can be expected that they will be ‘‘complex’’ patients.

6. Discussion

Our first goal was to see whether patients with PAV disease could be clustered into

logistically homogeneous groups. The two different clustering models that we developed,

both based on all six logistic variables and two latent factors, show that some reliable

clustering is possible. This result can be used as a starting point for building alternative

classification models that look for homogeneity from the logistic point of view and not only

from the medical point of view.

The two considered approaches, i.e. clustering on logistic variables, and clustering based

on latent factor extracted from logistic variables, both lead to three main clusters, of which

two hold clear-cut groups of patients: one can be labeled ‘‘moderately complex’’ patients,

while the other holds ‘‘complex’’ patients. The remaining third cluster contains a small

number of cases that cannot be assimilated to one of the two valid clusters. The rules

induced for the characterization of each cluster provide a good insight into the relative

importance of the involved logistic dimensions, and here we recall them: (1) C_dif_spm,

(2) C_shift, (3) N_visit_mc, (4) M_shift_mth and (5) Var_shift_mth, all these computed

per medical case. The rules indicate, for instance, that N_shift_mc may have a low

importance: it is never used in any of the rules in the rule set. Tests based on this feature are

removed from the rules because they do not contribute enough, apparently, to the

classification power of the model. Next to providing information about the logistic

variables, the induced rules that distinguish between ‘‘complex’’ patients and ‘‘moderately

complex’’ patients can eventually provide reasons for developing a control system.

The grouping models that we develop are fully useful if we are able to combine them

with predictive models. Therefore, we are interested to develop predictive models that uses

a priori information to predict in which cluster a patient is likely to be, as soon as the patient

enters the healthcare system. The predictive models obtained so far are rather general.

Nevertheless, we can extract some useful information. Look for example to the following

rules produced in experiment ‘‘all diagnoses’’ with clustering model LOG_VAR_3, shown

in Table 12.

Rule #1 for cluster-1 says that a patient is ‘‘moderately complex’’ if he/she does not have

diagnosis d585 (renal failure), d2507 (diabetic foot), d429, d286, but has d250 (diabetes)

and C_sec_diag � 2. In contrast, using Rule #2 for cluster-3, a patient is estimated to be
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‘‘complex’’ if he/she additionally has diagnosis d2507 (and not diagnosis d585 and d414),

increasing the number of diagnoses, i.e. C_sec_diag � 7. Rule #1 for cluster-3 expresses

that as soon as a patient has diagnosis d585 (renal failure), it will be a complex patient (a

PAV patient that need dialysis as well). It should be noted that the models presented here

are based on a relatively small set of examples, and their outcomes should be taken as

indicative of their potential; until there is considerably more data, the obtained predictive

rules are not detailed enough and reliable to base a whole control system on.

7. Conclusions and future work

In the present paper, we proposed a methodology that attempts to offer a solution for a

better coordination of patients with peripheral vascular diseases. We showed that by using

clustering technique and factor analysis, PAV patients can be shared in two clear-cut

clusters, namely ‘‘complex’’ and ‘‘moderately complex’’ patients. These clustering models

are relevant if predictive models can be built, based on some a priori patient characteristics.

Using data mining techniques, we developed such predictive models and we illustrated that

rules can found. The rules that assign patients to clusters also provide clues about which of

the six logistic variables that represent a medical case are relevant or not, and in which

interaction they are relevant.

Further research should be invested in finding more a priori patient characteristics that

allow predicting logistic clusters more reliably. We plan to do future research by

developing a multi-step model. A priori knowledge as age, gender, risk factors and

relevant secondary diagnosis are known the first time a patient enters the hospital. Based on

these information, a first prediction could be made and patients could receive the proper

treatment faster. Also, when more information become available through time (as more

Table 12

A selection of predictive rules from experiment ‘‘all diagnoses’’ with clustering model LOG_VAR_3

Rule number Rule description Coverage Reliability (%)

Rule #1, cluster-1 IF d585 ¼ 0 and d2507 ¼ 0
and d429 ¼ 0 and
C_sec_diag � 2 and

98 61.2

d286 ¼ 0 and d250 ¼ 1
and d7802 ¼ and d440 ¼ 0
and d4359 ¼ 0 and
d2508 ¼ 0 and Age > 55

THEN cluster-1
Rule #1, cluster-3 IF d585 ¼ 1 and d442 ¼ 0

and d429 ¼ 0 and d444 ¼ 0
74 70.3

THEN cluster-3
Rule #2, cluster-3 IF d585 ¼ 0 and d2507 ¼ 1

and C_sec_diag � 7 and
d414 ¼ 0 and

53 79.2

d250 ¼ 1
THEN cluster-3
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steps in the process become known), a secondary more precise prediction can be made.

Thus, changes in patient groups and treatments could automatically be discovered and

relayed back to the hospital management to inspect whether the new data warrant new

changes.

References

[1] Bertrand JWM, Wortmann JC, Wijngaard J. Production control. A structural and design oriented approach.

Amsterdam: Elsevier, 1990.

[2] Clementine Datamining System, version 6.0.1. User guide. SPSS Inc., 2000.

[3] CaseMix Quarterly of the Patient Classification System Europe organization Web Site. Available at http://

www.casemix.org.

[4] Cios KJ, Teresinka A, Konieczna S, Potocka J, Sharma S. Diagnosing myocardial perfusion SPECT bull’s-

eye maps: a knowledge discovery approach. IEEE Eng Med Biol 2000;19(4):17–25.

[5] Dilts D, Khamalah J, Plotkin A. Using clustering analysis for medical resource decision making. Med

Decision Mak 1995;15(4):333–47.

[6] Fetter RB. The new ICD-9-CM Diagnosis-Related Group classification scheme, HCFA Publication no.

03167. Washington: Health Care Financing Administration, US Government Printing Office, 1983.

[7] Fetter RB, Averill A. Ambulatory visit groups: a framework for measuring the productivity in ambulatory

care. Health Serv Res 1984;19:415–37.

[8] Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell

Med 2001;23:89–109.
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