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Abstract

The capital adequacy framework Basel II aims to promote the adop-
tion of stronger risk management practices by the banking industry.
The implementation makes validation of credit risk models more im-
portant. Lenders therefore need a validation methodology to convince
their supervisors that their credit scoring models are performing well.
In this paper we take up the challenge to propose and implement a
simple validation methodology that can be used by banks to validate
their credit risk modelling exercise. We will contextualise the proposed
methodology by applying it to a default model of mortgage loans of a
commercial bank in the Netherlands.
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1 Introduction

Since June 1999 the Basel Committee on Banking Supervision has pub-
lished several proposals for revising the existing Basel I capital adequacy
framework. The revised framework, known as Basel II (Basel Committee
on Banking Supervision (2006)), is based on three pillars: minimum capital
requirements, supervisory review, and market discipline. It aims to promote
the adoption of stronger risk management practices by the banking industry.
One of the main differences between the Basel I and Basel II frameworks is
that banks’ possibilities to use internal risk assessments as inputs to capital
requirements are considerably enlarged. Duffie and Singleton (2003) cate-
gorize the risk faced by banks into: market risk, credit risk, liquidity risk,
operational risk and systemic risk. In this paper we focus on credit risk.
Within the framework of Basel II, banks can opt for different approaches to
assess their credit risk. More specifically, banks may choose between a stan-
dardized approach where fixed risk weights are used and no differentiation
is made on the basis of actual risk, and the internal ratings based approach
(IRB), for which risk weights are based on the actual risk of transactions
and banks can use own estimates of the probability of default (PD).

The implementation of Basel II raises many technical questions regard-
ing the development and calibration of credit risk models. It also makes the
validation of credit risk models much more important, e.g. since the frame-
work requires strong efforts by banks to assess their capital adequacy and by
supervisors to review such assessments. Bank regulators will pay more and
more attention to testing model validation processes in order to examine
the accuracy of banks’ credit scoring models. Lenders therefore need a solid
and generally accepted validation methodology to convince their supervi-
sors that their credit scoring models are performing well. This especially
holds for banks that opt for the IRB approach of capital adequacy. A ci-
tation from the Basel Retail Guidance clarifies the utmost importance of
validation,“A bank must establish policies for all aspects of validation. A
bank must comprehensively validate risk segmentation and quantification
at least annually, document the results, and reports its findings to senior
management” (Federal Register (2004)).

Typically, the portfolio on loans consist of loans to business (small, large,
retail) and loans to individuals (mortgages). The main difference in the ap-
proach to determine PDs for loans to business and loans to individuals,
stems from the fact that for business banks make use of external ratings.
For loans to business banks use external ratings to determine PDs, for ex-
ample ratings of a credit bureau or Standard & Poor’s or Moody’s ratings.
Carling, Jacobson, Lind, and Roszbach (2007) base the PDs of firms partly
on ratings determined by a credit bureau. For individuals with a loan such
external ratings do not exist. Therefore, banks need to estimate the PDs,
for example, by means of a logit model. Validation of PD models for loans to
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business is concentrated on validating the PD estimates. Traditionally, PDs
are validated by measuring the discrimination and calibration (see Dwyer
and Stein (2006)). Discrimination and calibration are measures that deter-
mine how well the estimated PDs fit the data. Of course, discrimination and
calibration can also be used to validate PD models for loans to individuals.
However, discrimination and calibration will only provide information on
how well a model fits the data. For loans to individuals banks use a logit
model to estimate the PDs. In this case validation is not only restricted to
the PDs (by means of discrimination and calibration), because in addition
the parameter vector can also be validated. By also taking the parameter
vector into account, the validation will be more rigorous since information
on how the fit can be improved is obtained. Careful examination of the
effects of risk drivers on the PD may show that such an effect changes over
time, or is different by type of product.

Nowadays banks pay a lot of attention to the validation process, but
still a general accepted validation methodology does not exist. Validation
requires e.g. quantifiable expectations about the impact of changing eco-
nomic conditions. However, these dynamic effects are often not taken into
account in the model constructing process. Moreover, the model construc-
tion is in many instances hampered by missing observations and because
banks have not historically documented all important indicators of credit-
worthiness comprehensively. Facing these and other practical problems, the
question then arises as to how validation should take place. Supervisors,
like the Dutch Central Bank (DNB), give some guidance on how to val-
idate credit risk models (De Nederlandsche Bank N.V. (2005)). However
this guidance only gives an introduction to model validation.

In this paper we take up the challenge to propose and implement a simple
validation methodology that can be used by banks to validate their credit
risk modelling exercise. The methodology we propose is supposed to be
general enough to be useful for a diversity of banks, and aims to be especially
helpful for the portfolio of loans to individuals. In our methodology we
focus not only on validation of the PDs, but we specifically pay attention
to validation of the parameter vector of the underlying model. This will
provide information on how well the model fits and on how the fit may be
improved.

Validation is obviously not only a statistical exercise. Managerial judge-
ment and a qualitative analysis of the model are also highly important.
However, the initial validation will primarily be technical and model based.
Moreover, statistical validation is needed to obtain scientific rigor and a
common yardstick for the validation exercise. For these reasons, this article
will focus on a quantitative validation technique and propose a statistical
validation methodology. In addition, this article will contextualise the pro-
posed methodology by applying it to a default model of mortgage loans of
the Friesland Bank, a commercial bank in the Netherlands.
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The remainder of this paper is organised as follows. Section 2 provides
some background information on the Basel II accord and discusses several
models that can be used for modelling credit risk. In section 3 our proposed
validation methodology will be set out. We base our methodology partly on
Harrell (2001) who validates a logit model with an application in the medical
science. We will explain several statistical techniques that are available to
validate models, and apply these techniques to validate the default model of
mortgage loans of Friesland Bank in section 4. Section 5 surveys the article
and provides some areas for further research.

2 Credit Risk

2.1 The Basel Capital Accord

The Basel Committee on Banking Supervision (Basel Committee) intro-
duced the Capital Accord of 1988, also referred to as Basel I. Basel I aims
to provide methods by which financial institutions can determine their min-
imum capital requirements. In the accord a capital measurement system is
introduced according to which banks have to divide their activa into four
classes: OECD governments, loans to OECD banks, mortgages and all other
loans.

A risk weight has to be assigned to the total exposure in each class.
Basel I sets the weights to the four classes equal to 0%, 20%, 50% and 100%
respectively. The product of the total exposure and risk weight in each class
is called the risk-weighted activa. Basel I sets a mininum ratio of capital to
the risk-weighted activa of 8%.

In 1999 the Basel Committee proposed a new accord to replace the ex-
isting Basel I accord. This new accord, known as Basel II, is intended to
improve the way capital requirements reflect the underlying risks. There are
three approaches distinguished in Basel II: the Standardized Approach, the
Foundation IRB approach and the Advanced IRB approach.

The Standardised Approach uses the same concepts contained in Basel I
(see Basel Committee on Banking Supervision (2001b)). According to the
Standardised Approach banks have to divide their credit exposures into
classes based on observable characteristics of the exposures (for example
whether it is a corporate loan or a mortgage loan). For all classes a fixed
risk weight is determined by the supervisor. The minimum ratio of capital
to the total weighted exposure is 8%.

Under IRB approaches, four inputs are needed for credit risk determina-
tion and capital calculations: the probability of default, an estimate of the
loss given default, the exposure at default and the remaining maturity of
the loan (see Basel Committee on Banking Supervision (2001a)). IRB ap-
proaches permits a bank to use internal ratings as primary inputs to capital
calculations. This will lead to more diverse risk weights and a greater risk
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sensitivity. The banks are not allowed to determine all the elements needed
to calculate their own capital requirements. The Basel Committee specified
formulas which have to be used in combination with information provided
by the banks to determine the risk weights.

In the Foundation IRB Approach a bank determines the probability
of default for each borrower and the supervisor supplies the other inputs,
like the loss given default, the exposure at default and the maturity. The
Advanced IRB Approach permits banks to estimate all four inputs needed
for credit risk determination and capital calculations: the probability of
default, the loss given default, the exposure at default and the maturity.

For a bank to be permitted to use an IRB approach, they must meet a
set of minimum requirements. One of the requirements is that banks have
to estimate the probability of default for each loan. Typically, the portfolio
on loans can consist of several classes of loans: loans to retail, mortgages,
loans to small business and loans to large business. Banks are allowed to
estimate separate PD models for each class of loans (section 395 of Basel
II). According to the Basel Accord a default takes place when the borrower
is past due more than 90 days on any credit obligation.

2.2 Notation

Before we describe models which can be used to model default, we introduce
some notation to be used throughout the paper.

i is the index of clients, i = 1, . . . , nt. nt is the number of observations
in period t, t is the time index, t = 1, . . . , T . Define the total number of
observations as N =

∑T
t=1 nt. Note that nt is not constant over time since

not all clients are measured in each time period. Some contracts start in a
period later than period 1 and some contracts mature before period T .

Let Xit = (1, xit,1, . . . , xit,k) be the (k+1)-vector of explanatory variables
of client i at time t. Xit includes an intercept, the explanatory variables
may be time varying (for example age of the client) or client specific (for
example sex of the client). Let Yit be the dependent variable which equals
1 if client i defaults between time t and t + 1, and 0 otherwise. Denote the
probability that Yit equals y given Xit by Pr(Yit = y|Xit;β), y = 0, 1, and
define pit = Pr(Yit = 1|Xit;β) as the probability that Yit equals 1, where β
is the (k + 1)-parameter vector of interest.

In general, pit can take on every value between 0 and 1. In practice
banks often divide the loans into borrower grades, with a fixed probability
of default for each grade. With respect to borrower grades some additional
notions are defined. g is the index of borrower grades, g = 1, . . . , G. Let
n1g be the number of loans in borrower grade g that defaulted, define n0g =
ng − n1g. Let Pg be the default probability in borrower grade g.
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2.3 Default Models

Two main types of statistical models for modelling defaults are duration
models and classification models. In duration models, the focus is on the
time to default. Usually, this is done through modelling the hazard function:
what is the probability of default in a short time interval starting at t, given
that default has not occured until t. The advantage of a duration model is
that it provides instantaneous information. At each point in time, the time
to default can be determined through the duration model. However, in the
practice of defaults the data sets are often too limited to estimate a duration
model. To estimate a duration model observations on the time of default
are necessary. The data set we have at hand is censored in the sense that of
the total number of observations only a small part defaulted on their con-
tract. This censoring complicates the estimation of the model (Kalbfleisch
and Prentice (1980)). A second problem is the problem of omitted variables
or unobserved heterogeneity. Omitted variables can occur in two ways, con-
ditional on the response variable default, the omitted variables can be either
dependent or independent of the observed explanatory variables. Both cases
of omitted variables will cause problems in duration models (Cameron and
Trivedi (2005)). Omitted variables will cause unobserved heterogeneity and
with duration models this results in a serious specification error (Kalbfleisch
and Prentice (1980)). Another disadvantage is that a duration model does
not provide the probability of default in the next period directly. The esti-
mation of default probabilities is a requirement for banks who use an IRB
approach.

The other main approach in modelling the probability of default is
through classification models (an excellent overview is given in Hastie, Tib-
shirani, and Friedman (2001)). The most popular models in this category are
discriminant analysis and probability models (Duffie and Singleton (2003)).
Discriminant analysis assumes that the overall population of borrowers con-
sists of two subpopulations, a group of defaulters and a group of nondefault-
ers. Each borrower is assumed to be a draw from one of these populations
and the bank wants to determine which. Based on the borrower charac-
teristics the bank determines to which population the borrower belongs.
Discriminant analysis assumes that the independent variables are each nor-
mally distributed and the joint distribution of the variables is assumed to
be multivariate normal. In practice this assumption of normality is often
violated. Another disadvantage of discriminant analysis is that it results
in the subpopulation each borrower belongs to. As said before, Basel II
explicitly requires banks to determine the probability of default when an
IRB approach is used for capital calculations. There is no direct and ob-
vious method to determine the default probabilities based on discriminant
analysis.

Models that result directly in probabilities are probability models. In a
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probability model the probability of default is modelled as a function of the
characteristics of the borrower. Let the true model be

Pr(Yit = 1|Xit;β) = G(Xit;β), (1)

where β are unknown parameters to be estimated.
Examples are the logit model, G(Xit;β) = Λ(β′Xit) = 1

1+exp(−β′Xit)
,

and the probit model, G(Xit;β) = Φ(β′Xit), where Φ(·) the standard normal
distribution function. β′Xit is sometimes referred to as the index. In practice
the logit model is often assumed.

The assumption of a logit model is not restrictive. Equation (1) can
be rewritten as Pr(Yit = 1|Xit;β) = G(Xit;β) = Λ(Λ−1(G(Xit;β))), be-
cause Λ(·) is an invertible function. Therefore, the linear term in the logit
model can be interpreted as a first-order Taylor expansion of Λ−1(G(Xit;β)).
Whether or not this approximation is precise enough, can be examined by
adding non-linear terms and interactions to the index of the logit model.
Note that the approximation is exact if the true model is a logit model. Of
course, this argument can be applied to other choices of G(·) as well. In
any case, the assumption of a logit model is not restrictive, as long as one
allows for enough flexibility in the systematic part of the model. One of
the advantages of the logit is that the parameters can be easily estimated
using the maximum likelihood method. Of course, also with logit models
the problem of omitted variables might occur. However, in contrast with
duration models, omitted variables will not cause biased estimates if these
variables are independent of the observed explanatory variables (proven by
Lee (1982)).

As said before, banks are allowed to estimate separate PD models for
each loan class (loans to retail, mortgages, loans to small business and loans
to large business). Moreover, banks may estimate hybrid models for a spe-
cific class. A hybrid model is a combination of two (or more) models, this
type of modelling is also known as mixed models. One possibility applied in
practice is the combination of a statistical model (for example a logit model)
and a so-called expert model. An expert model is a model which is based
on knowledge of an expert as opposed to a statistical model which is based
on historical data. An expert can have information on the loans which is
not available in the data set. Based on this information a minimum PD
can be set for a particular group of loans. So banks do not have to rely on
the results of statistical models completely. In fact, the outcome of a model
may be overruled based on expert judgements. However, the bank must
have clear guidelines on how and to what extent overruling can be used and
whose responsible for it (section 417 and 428 of Basel II).

The models described above all result in a continuous outcome of the
probability of default. Or, stated differently, one specific probability of de-
fault for each loan. In practice banks divide the loans into borrower grades
or risk buckets. At minimum banks must have seven borrower grades for
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non-defaulters and one grade for defaulters (section 404 of Basel II). As said
in section 2.1 banks are allowed to estimate separate models for each class
of loans. Based on these separate PD models borrower grades for each class
of loans have to be determined. There are two possible ways to determine
the borrower grades. The first is to consider each class separately and de-
termine borrower grades such that the fit in each class is best. However, it
is very likely this will result in different borrower grades for each loan class
and hence comparison of borrower grades for loans of different classes will
be impossible. The second way to determine risk buckets is to require in
advance that the risk buckets are the same for each class of loans. In this
case two loans in a specific risk bucket will have the same PD.

3 Model Validation

3.1 General Ideas

The IRB approaches of Basel II requires banks to model the risk associated
with their portfolios. Banks have all kinds of information available on their
portfolios, for example in computer data ware houses, but also in the form
of documents. It is required to use all relevant information to determine the
risk of the portfolio (section 411 Basel II). All relevant information available
in different sources within the bank is merged into a data set. Often this
data set is not suitable for statistical analysis. The next step is to use this
data set to form a final data set which can be used for the calculations.
This data set will be the basis for the statistical model. Finally, based on
this statistical model, banks determine the risk associated with the portfolio.
Once a credit risk model is implemented in the risk management of the bank
this process can be repeated on a regular basis (for example once per year).
The process described above is schematically summarized in figure 1.

Basel II requires the validation of this process (section 500): “Banks
must have a robust system in place to validate the accuracy and consistency
of rating systems, processes, and estimation of all relevant risk components.”
The requirements a PD model must meet are set out in Basel II. Validating
a PD model means to verify to what extent the model meets the minimum
requirements of Basel II. In order to do this, we distinguish three forms of
validation: theoretical validity, data validity and statistical validity. This
classification is also made by Gass and Thompson (1980). The methodol-
ogy we develop in this section focuses mainly on probability models. The
reasons for focussing on probability models are set out in section 2.3. We
specifically focus on logit models, since in our application we have the task
to validate a PD model of Friesland Bank, which uses a logit specification to
estimate default probabilities. This section will first explain the three forms
of validation briefly and next statistical validation will be discussed more
extensively.
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Figure 1: Determine Risk of Portfolio

3.1.1 Theoretical validation

Theoretical validation requires the review of the theories and assumptions
underlying the proposed model. This corresponds with section 402 of Basel
II where a detailed outline of the theory and assumptions underlying the
model is required.

Theories associated with PD models can be thought of as economic the-
ories about the important risk drivers of default occurrence. If an important
risk driver is missing the bank has to be conservative with the final estimates
(requirement 411 of Basel II).

Section 2.3 discussed the types of models which can be used to model
default. Underlying each model there are several assumptions. Reviewing
these assumptions is part of theoretical validation. The use of the logit
model to model PD assumes the observations to be independent. However,
the data available for model estimation often contains observations at several
points in time. Consequently, most mortgages are included in the data set
more than once. So clearly the assumption of independence is violated.

3.1.2 Data validation

Data validation is about the data underlying the model. The data must
be validated (section 417 of Basel II) and banks must show that the data
used are representative for the underlying population. To validate the data
used to develop the model we distinguish three parts of data validation:
representative data, appropriateness of the variables and completeness of
the data set. In the following these three parts of data validation will be
discussed.
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Representative Data
In general, banks have two options regarding the data used to estimate
the model. The first option is to use internal data and the second is to
use external data. Basel II allows the use of external data (sections 448
and 463). The use of external data requires banks to demonstrate that the
data are representative for the underlying population of the bank. When
the bank uses internal data on the complete portfolio the data are clearly
representative. In practice, data sets on a complete portfolio can be too
large to estimate a model, in this case a subset can be used instead. A
subset has to be taken before doing any analysis and it can be obtained
by taking a random draw of the complete data. The sampling procedure
has to be reviewed to determine whether the sample is representative of the
underlying population.

Appropriateness of the Variables
At a minimum borrower characteristics, transaction risk characteristics and
delinquency of exposure has to be considered as explanatory variables in a
PD model (section 402 of Basel II). Examples of borrower characteristics
are age, income, marital status, occupation etcet. Transaction risk char-
acteristics are for example mortgage type, loan to value, payment history
etcet. Several problem arise with the variables. The values of a variable can
change over time. For instance, the variable income is very likely to change
over time. The data set typically contains the income of the borrower at
the moment the contract is made. However, it is reasonable to state that
in determining the PD future income is important instead of the income at
the moment the contract is made. A second problem with the variables is
that some variables are difficult to measure. For example measurement of
default itself is difficult. According to Basel II (section 452) default occured
when the obligor is unlikely to pay and/or the obligor is past due more than
90 days. In practice it is difficult to measure when an obligor is unlikely to
pay.

Completeness of the Data Set
Basel II requires the length of the underlying historical observation period
to be at least five years (Basel II section 463). In practice it might be that
banks have information on less than five periods. This means that the data
set is incomplete. Of course, this problem of incomplete data will be solved
over time as more information becomes available. When the underlying
observation period is less than five years banks are allowed to use external
data to estimate the model. Where external data is used the bank must add
a margin of conservatism (Basel II sections 451 and 462).

Incomplete data also occur in another way. Often information is missing
for some variables for a number of observations. This means there is less
information available and consequently the results have to be interpreted
conservatively (section 411 of Basel II). Conservatism may imply that the
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PD outcome of the model is considered as a lower bound. The final esti-
mate of the PD can be set somewhat higher than this lower bound. From a
statistical point of view missing data are a problem since all standard statis-
tical methods require complete data sets. The most commonly used method
to handle missing data is complete case analysis. Complete case analysis
uses only the complete observations. However, complete case analysis will
give, at best, unbiased but inefficient estimates and, at worst, biased esti-
mates. A good reference on missing data analysis is Little and Rubin (2002)
where historical approaches as well as more recently developed approaches
are discussed.

3.1.3 Statistical validation

In general a model is not able to reproduce the exact data underlying the
model. As said before, Basel II requires banks to validate the accuracy
of the model. To determine the accuracy of the model several statistical
tests are available in the literature. The next subsection will discuss the
most used tests as a part of statistical validation. We base this section
on Harrell (2001), Basel Committee on Banking Supervision (2005) and
Engelmann and Rauhmeier (2006). Harrell (2001) is one of the very few
that describes very clear how to validate a logit model with an application
to medical science, Basel Committee on Banking Supervision (2005) is a
collection of studies on validation methods in general, and Engelmann and
Rauhmeier (2006) contains a set of articles about probability of default, loss
given default and exposure at default.

3.2 Statistical Model Validation

In the existing literature (Harrell (2001), Basel Committee on Banking Su-
pervision (2005) and Engelmann and Rauhmeier (2006)) models are vali-
dated by determining the discrimination and calibration of the model. A
model’s discrimination is the ability to separate between defaulters and non-
defaulters. Calibration is the ability of the model to make unbiased estimates
of the outcome. We say that a model is well calibrated when a fraction of
p of the events we predict, with a probability p actually occur. Discrim-
ination and calibration both compare the estimated probabilities with the
observed frequency of default in the data set. So by measuring discrimina-
tion and calibration the PDs are validated. However, validation can be more
rigorous since the parameters of the model (β̂) can also be validated. We
validate the parameters by means of reproducibility of research, stability of
parameters and choice of functional form. Besides we describe out-of-sample
performance and bootstrap to validate the PDs as well as the parameteres.
Subsequently we discuss the items of statistical validation: reproducibility of
research, stability of parameters, choice of functional form, discrimination,
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calibration, out-of-sample performance and bootstrap.

3.2.1 Reproducibility of Research

Reproducibility of research is defined as the duplication of the results of
a former study (McCullough, McGeary, and Harrison (2006)). In the lit-
erature reproducibility is also known as replication. Positive and negative
replication have a value for the replicated study. A positive reproducibility
gives more support to the results of a former study. When a replication is
negative it is clear that errors in the research have occured. Of course the
question then remains whether the original study or the reproduced study
contains errors. For a researcher to be able to reproduce a study, docu-
mentation of the former study must be complete. In general, incomplete
documentation will make it impossible to reproduce the results of a study.
A second problem that makes it difficult to reproduce results is associated
with the data. When the data are not recorded and documented correctly
and completely they are useless to another researcher, as stated by Dewald,
Thursby, and Anderson (1986). Moreover, data are often revised when new
information is available. Exact replication will be impossible when a revised
data set is used in a replication. So the researcher has to be sure to use
exactly the same data as in the replicated study.

3.2.2 Stability of Parameters

There are two types of stability, stability over time and stability over groups.
Often models are intended to be used for predictions, but predictions are
only valid if parameters are stable over time. In general we are often inter-
ested in stability over time for a subvector of the parameter vector β. For
example, interest is in stability over time of the effect of the explanatory
variable sex. Divide the parameter vector into two subvectors, β′ = (β′1, β

′
2).

Let ki be the length of βi, i = 1, 2, k1 + k2 = k + 1. Suppose we want to
test stability over time of the subvector β1. Let T1 be the potential change
point of interest. So we want to test whether the value of the subvector β1

of β changes after period T1. The value of β2 is assumed to be constant over
time. The model to be estimated can be formulated as

pit =
1

1 + exp {−β′1.1Xi1tIt≤T1 − β′1.2Xi1tIt>T1 − β′2Xi2t}
, (2)

where the vector of explanatory variables is divided analogously to the pa-
rameter vector. β1.j is the subvector β1 of β for period j = 1, 2. I. is an
indicator function which equals 1 if the condition is satisfied and 0 elsewhere.
In total in the model above we need to estimate 2 · k1 + k2 parameters. The
estimator β̂1.1 of β1.1 uses the data up to and including period T1, the esti-
mator β̂1.2 of β1.2 uses the data after period T1, and the estimator β̂2 of β2
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uses all the data. Now the null hypothesis of stability over time of subvector
β1 can be formulated as

H0 : β1.1 = β1.2,

this hypothesis will be tested against the two sided alternative

Ha : β1.1 6= β1.2.

Let L(β̂1.1, β̂1.2, β̂2) be the maximum of the likelihood of the model in equa-
tion (2) and let L(β̂) be the maximum of the likelihood of the model

pit =
1

1 + exp(−β′Xit)
.

The likelihood ratio test can be performed to test H0. The test statistic,
LR, is defined as

LR = 2
[
lnL(β̂1.1, β̂1.2, β̂2) − lnL(β̂)

]
.

The distribution of LR is χ2
k1

, where the degrees of freedom k1 is equal to
the number of restrictions imposed under H0. Of course, this test applies
as well if k2 = 0, i.e., all parameters are subject to the test.

In the procedure above we assumed T1 is known in advance. In general
this change point might be unknown, following Andrews (1993) the unknown
change point can be estimated in the following way. The likelihood ratio test
is performed for each possible value of T1 ∈ {1, 2, . . . , T}, resulting in T − 1
values of LR. The change point which results in the highest value of LR is
the estimate of the change point. Let LRmax be the LR test with the highest
value. Diebold and Chen (1996) describe two ways to determine the approx-
imate distribution of the test statistic LRmax. The first approximation is
the asymptotic distribution, which is the distribution of the supremum of
a series of chi-squared distributed statistics. Asymptotically this is correct,
but behavior in a finite-sample is unknown. The second approximation is
based on the bootstrap method. The bootstrap approximation is performed
using the following steps. 1. The test statistic LRmax is calculated. 2. B
bootstrap samples are generated using the model parameters estimated un-
der H0 and disturbances drawn from uniform distribution. The dependent
variable is equal to 1 if the probability is larger than a draw from the uni-
form distribution, else it is equal to 0. 3. For each bootstrap sample the test
statistic LRmax is calculated, this results in the so-called bootstrap distri-
bution. 4. The p-value is approximated by the fraction of bootstrap LRmax

values larger than the LRmax obtained using the observed data. Diebold
and Chen (1996) found that the second approximation using the bootstrap
distribution outperforms the asymptotic distribution, therefore we use the
bootstrap approximation in the application.
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As more data becomes available, there might even be multiple change
points, Bai and Perron (1998) considers issues related to multiple change
points.

To test whether the model is stable over groups the LR test can be
performed in an analogous way. Groups can be thought of as different
mortgage labels offered by a bank. In order to use the same model for all
the labels, the model has to be stable over groups.

DNB (De Nederlandsche Bank N.V. (2005)) requires to take the impact
of changing economic conditions into account in determining the PD. Since
the time span of the data sets in practice are limited to a few years, economic
trends are not part of the model. The best solution for banks at the moment
is to check for the stability of the parameters over time, as described above.

3.2.3 Choice of Functional Form

The logit model is used to estimate the PD. An assumption of the model is
that a variable X has a linear effect on the logit of Y = 1. However, this
relation can also be nonlinear. A simple way to describe a nonlinear effect
of a variable is to use a transformation of the original variable, for example
by taking the logarithm or the squared of the original variable. When the
nonlinear effects are to difficult to describe using simple transformations,
spline functions can be used (see Harrell (2001)). Restricted cubic spline
functions are extremely useful to fit a highly curved function. To explain
restricted cubic splines suppose there are two independent variables X1 and
X2. The effect of X1 on the logit of Y is assumed to be linear and the effect
of X2 is assumed to be nonlinear. Therefore the model can be written as
logit{Yi = 1|Xi} = β0+β1xi1+f(xi2), where f(·) is a restricted cubic spline.
Note that to keep notations simple we omitted the time index. The function
f(·) is specified as

f(xi2) = β2xi2 + β3(xi2 − t1)3+ + β4(xi2 − t2)3+ + . . . + βh+2(xi2 − th)3+,

where

(x)+ = max(0, x),

βh+1 =
β3(t1 − th) + β4(t2 − th) + . . . + βh(th−2 − th)

(th − th−1)
,

βh+2 =
β3(t1 − th−1) + β4(t2 − th−1) + . . . + βh(th−2 − th−1)

(th−1 − th)

and h is the number of knots. The function f(·) is linear before the first
knot t1 and after the last knot th and the function is continuous and dif-
ferentiable at all knots. In practice the number of knots is h = 3, 4, 5 or
6. The variable X2 is divided into intervals with endpoints t1, t2, . . . , th. In
each interval a cubic polynomial is fitted subject to the restrictions of conti-
nuity and differentiability at the knots. Once the parameters β0, β1, . . . , βh
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are estimated using maximum likelihood, βh+1 and βh+2 can be calculated.
When the effect of X2 is nonlinear, adding the cubic polynomial terms in
the model will give a better fit to the data. In summary, a spline function
makes the model more flexible.

3.2.4 Discrimination

Discrimination of a model is the ability to separate subjects’ outcomes (Har-
rell (2001)). Before we discuss several statistics to determine the discrimina-
tion of the model we want to ensure discrimination is not confused with cal-
ibration. Calibration is the ability of the model to make unbiased estimates
of the default probabilities. Several statistics are available to determine
discrimination and calibration. Table 1 gives an overview of the statistics
proposed by Harrell (2001), Basel Committee on Banking Supervision (2005)
and Engelmann and Rauhmeier (2006).

Table 1: Discrimination and Calibration Statistics

Discrimination Calibration
Basel Committee on Bank-
ing Supervision (2005)

Cumulative Accuracy Pro-
file, Accuray Ratio

Binomial test

Receiver Operating Char-
acteristic

Chi square test

Coefficient of concordance Normal test
Bayesian error rate Traffic lights approach
Entropy
Brier score

Harrell (2001) Coefficient of concordance α0 and α1 refitted model
Brier score Emax

Generalized R2
N

Engelmann and Rauhmeier
(2006)

Cumulative Accuracy Pro-
file

Binomial test

Receiver Operating Char-
acteristic

Chi square test

Brier score Normal test
Traffic lights approach
Spiegelhalter test
Redelmeier test

The Basel Committee’s Accord Implementation Group has found that
the Accuracy Ratio and the Receiver Operating Characteristic curve are the
most meaningful discriminant statistics (Basel Committee on Banking Su-
pervision (2005)). In the practice of banks the coefficient of concordance and
Brier score are commonly used to measure the discrimination of a model.
Therefore, we will discuss the Accuracy Ratio, the Receiver Operating Char-
acteristic curve, the coefficient of concordance and Brier score. For more
information on the other discriminant statistics in table 1 we refer to the
corresponding sources.

The Accuracy Ratio (AR) is a summary index of the Cumulative Ac-
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curacy Profile (CAP). The CAP, also known as Gini curve, Power curve
or Lorenz curve, is obtained by first ordering all borrowers on the horizon-
tal axis based on the scores of the model, from the lowest probability to
the highest probability. For a given fraction of borrowers on the horizontal
axis the percentage of defaulted borrowers with a lower probability than the
maximum probability of this fraction is plotted. The AR is defined as the
ratio of the area between the CAP of the model and the CAP of the random
model and the area between the CAP of the perfect model and the CAP of
the random model. AR has a value between 0.5 and 1, where 0.5 indicates
that the model performs equal to the random model and 1 indicates the
model performs perfect.

A second graph we can use to determine the discrimination of the model
is the Receiver Operating Characteristic (ROC) curve. Let C be the prob-
ability based on which the borrowers are classified into defaulters and non-
defaulters. If the estimated probability is above C the borrower is classified
as defaulter, else the borrower is classified as non-defaulter. The borrowers
classified as defaulters can be split into two groups, borrowers which are cor-
rectly classified as defaulters and borrowers which are incorrectly classified
as defaulters. The borrowers classified as non-defaulters can also be split
into two group, borrowers which are correctly classified and borrowers which
are incorrectly classified. The percentage of defaulters which are correctly
classified as defaulters is called the hit rate, denoted by HR(C). The hit rate
depends on the cut off value C. The percentage of non-defaulters incorrectly
classified as defaulters is called false alarm rate, FAR(C). The ROC curve
is obtained by plotting HR against FAR for different values of C. An ROC
curve close to the diagonal, indicates that the model is noninformative. The
more the ROC curve lies in the top left corner, the better the model makes
the distinction between defaulters and non-defaulters. Or, stated differently,
the greater the area under the ROC curve, the better the model. In practice
ROC curves are not only used to determine the discrimination, but also to
determine a cut-off point for granting loans (see Stein (2005)). The area
under the ROC curve is called coefficient of concordance (c) or Area Under
the Curve (AUC). When the value of c is 0.5 the ROC curve is equal to the
diagonal and the model makes random predictions. A value of c equal to 1
indicates that the ROC curve lies in the top left corner and the predictions
are perfect.

Brier score B is defined as (again omitting the time index for simplicity):

B =
1
N

N∑
i=1

(p̂i − Yi)
2 ,

where p̂i is the estimated probability of observation i. B is the average of the
squared difference between the probability and the observed outcome value
and can be interpreted as the mean of the sum of squares of the residuals.

16



A value close to 0 indicates the model performs good. Brier score can also
be used to determine the discrimination of a rating system with borrower
grades (Engelmann and Rauhmeier (2006)), g = 1, . . . , G. In this case Brier
score is defined as

B =
1
N

G∑
g=1

[
n1g(1 − Pg)2 + n0g(Pg)2

]
.

3.2.5 Calibration

Calibration is the ability of the model to make unbiased estimates of the PD.
Calibration is a concept which originates from meteorology, where proba-
bility models for weather forecasts are used. In this setting the following
definition is given (Seidenfeld (1985)): A set of probabilities are (well) cal-
ibrated if p percent of all predictions reported at probability p are true.
This definition is general and can also be applied in the setting of default
probabilities. Traditionally, the fit of a logit model is often analysed by a
classification table. A classification table is a 2×2 table, where the columns
are the two predicted values of the dependent variable and the rows are
the two observed values of the dependent variable. The predicted values
are determined using a cut-off probability which is often equal to 0.5. So
the predicted value of the dependent variable is equal to 1 if the predicted
probability is above 0.5 and 0 otherwise. The model is perfect if all cases
are on the diagonal of the classification table. A classification table gives
the percentage of correct predictions. In case of default the data sets are
highly unbalanced in the sense that only a small fraction defaulted on their
contracts, for example only 2% defaults occur. When a classification table
is used to determine the goodness-of-fit one concludes that a model with
constant default probability equal to zero will be preferred to a model with
several explanatory variables. In case of credit risk, this zero default prob-
ability is useless for the calculation of the capital reserve. In other words,
in the setting of determining capital reserve a classification table is not a
useful calibration tool.

Table 1 shows some tests to determine the calibration of the model.
Below we discuss the Binomial test, the chi-square statistic and we describe
a refitting method which can be used to determine the calibration.

The first step in calibrating a PD model is often to perform the Binomial
test (Engelmann and Rauhmeier (2006)). The Binomial test is for testing a
single borrower grade at the time. The number of defaults in grade g, n1g

follows a binomial distribution if the assumption of independent observations
is made. So

Pr(n1g) =

(
ng

n1g

)
P

n1g
g (1 − Pg)ng−n1g .
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Let the estimated PD in grade g be P̂g. The null hypothesis that the true
PD, Pg, equals P̂g against the two-sided alternative can now be tested. The
test statistic is the number of observed defaults in grade g, n1g. The null
hypothesis will be rejected if n1g falls outside the interval (B(α/2), B(1 −
α/2)), where B(·) is the quantile of the Binomial distribution of n1g with
parameters ng and P̂g.

The chi-square (or Hosmer-Lemeshow) test statistics compares all bor-
rower grades simultaneously. Define the following variable

Eg = ng · Pg : the number of expected defaults in grade g,

The chi-square test statistic is defined as

Ĉ =
G∑

g=1

(n1g − Eg)2

ngPg(1 − Pg)
.

If the chi-square test is performed on the development set, the distribution
of Ĉ is approximated by the chi-square distribution with G − 2 degrees of
freedom, χ2

G−2. If the test is applied on out-of-sample data the distribution
of Ĉ is chi-squared with G degrees of freedom.

Harrell (2001) describes a refitting method which can be used to calibrate
a logit model. Suppose the original data (Y, X) is splitted in a development
set (Y d, Xd) and a test set (Y t, Xt). β̂ is the maximum likelihood estimator
of β based on the development sample. Again omitting the time index, β̂ is
the solution of the following maximum likelihood conditions

∑nd

i=1 xd
ij

(
Y d

i − 1
1+exp(−β′Xd

i )

)
= 0, for j = 0, 1, . . . , k,

where (Y d, Xd) is the development sample of size nd. The actual calibration
probability and the original predicted probability can be calculated, for the
test set (Y t, Xt) of size nt, in the following way. The model is refitted

p
(c)
i = Pr(Y t

i = 1|β̂′Xt
i ) =

1
1 + exp (−γ0 − γ1β̂′Xt

i )
,

where p
(c)
i denotes the actual calibrated probability, i = 1, . . . , nt. Refitting

the model means determining the maximum likelihood estimators of γ0 and
γ1. The original predicted probability, p̂t

i, is given by

p̂t
i =

1
1 + exp(−β̂′Xt

i )
,

where β̂ is the maximum likelihood estimator of β based on the development
sample, (Y d, Xd). Now γ0 and γ1 can be estimated using maximum like-
lihood. Let γ̂0 and γ̂1 denote the maximum likelihood estimators. If γ̂0 is

18



close to zero and γ̂1 is close to one, the model is well calibrated. A statistic
related to the refitted model is

Emax = max
p̂

|p̂ − p̂(c)|,

which is the maximum error in the predicted probabilities.
A graphical tool to determine the calibration of a model is the calibration

plot (Venables and Ripley (2002)). A calibration plot is obtained in the
following way. We look at those loans with predicted probability of default
equal to some value, say ω, 0 < ω < 1. Next of those loans the proportion
p (0 < p < 1) of defaulted loans is determined. Then the calibration is
obtained by plotting p against ω. A straight line in the calibration plot
means the model is well calibrated.

3.2.6 Out-of-sample Performance and Bootstrap

The statistics defined above can be applied to the development set to de-
termine the performance of the model. However, we want to determine the
performance of the model for future predictions. Using the same data both
to develop the model and to determine the performance of the model will
result in an overestimation of the performance for future predictions. For
example, the value of Brier score determined on the development set will be
lower than the value determined on a different data set. If the performance
is determined on the development set the performance will be estimated
too optimistic. To correct for this optimism out-of-sample performance and
bootstrap methods can be applied.

So, we are interested in how well the model performs on a different set
than the development set. Hence we need two data sets to determine the
out-of-sample performance, a development sample and a test sample. First,
the model is developed based on the development sample. Second, the test
sample is used to determine the out-of-sample performance of the model by
means of calculating the discrimination and calibration of the model.

In general we can split the original data into a development and a test
sample in two ways. This results in two types of out-of-sample performance,
that is out-of-sample performance within the time period and out-of-sample
performance outside the time period. These two types of out-of-sample per-
formance are also required by Basel II (section 420). To determine the out-
of-sample performance within the time period a subset of the complete data
set is used in model development and hence the development set contains
observations over T periods. The remaining data also contains observations
over T periods and is used to determine the out-of-sample performance of
the model. Out-of-sample performance outside the time period means that
the data is splitted in the following way. The observations in the first T − q
periods are used to develop the model and the observations in the last q
periods are used to determine the out-of-sample performance.
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The disadvantage of out-of-sample performance is that the size of the
sample used to develop the model is smaller than the original sample of size.
The bootstrap method overcomes this problem. The bootstrap method first
generates B bootstrap samples. A bootstrap sample is a sample with re-
placement of size N drawn from the original sample. On each of these boot-
strap samples the model is estimated. The B fitted models are applied to the
original sample to give B values of a discrimination or calibration measure.
The overall accuracy is the average of the B measures. This simple boot-
strap method turns out not to work very well. Efron and Tibshirani (1993)
describe an enhanced method that works better than the simple method. It
is shown that this enhanced method performs better than the simple method
(see for example Gong (1986) or Efron (1990)). First B bootstrap samples
are drawn and B models are estimated using the bootstrap samples. The
fitted models are applied to the original sample to give B measures. The fit-
ted models are also applied to the bootstrap samples (used to fit the model)
to give B measures based on the bootstrap samples used to fit the model.
The so-called optimism is calculated for each bootstrap sample by taking
the difference between the measure based on the original sample and the
measure based on the bootstrap sample. This results in B values of the
optimism. The overall optimism is the average of the B values of optimism.
To determine the discrimination or calibration of the final model, the over-
all optimism is substracted from the measure calculated on the final model
which is fitted based on the original sample.

4 Application

In the empirical part of this paper we develop a logit model to estimate the
probability that a given borrower defaults on his mortgage. The data we
use are from Friesland Bank, a bank in the Netherlands. Friesland Bank
wants to meet the requirements Basel II stated for the Foundation IRB
Approach. Hence, a model has to be developed to predict the probability
that a borrower defaults on his contract within 1 year. All calculations are
done using the program R (Copyright 2005, the R Foundation for Statistical
Computing, version 2.1.1).

4.1 Description of the Data

The data set contains yearly information from 2000 till 2003 on mortgages to
individuals. Note that for a typical observation, the explanatory variables
are measured at the beginning of each period and the default variable is
measured at the end of each period. So the estimated PD is the probability
that default occurs within one year. A short description of the variables can
be found in appendix A.
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Friesland Bank already developed a logit model. Their model contains
the variables loan to value, loan to value missing, loan to income, expired
duration, expired duration missing, mortgage type and overdue payment.
The variable mortgage type in the model of the bank is an indicator variable
which states whether the loan is of a linear type or of a different type. The
model contains two dummy variables, loan to value missing and expired
duration missing. Loan to value missing is a dummy for the cases where
the loan to value is missing and expired duration missing is a dummy for
the cases where the expired duration is missing. The estimated coefficients
are shown in table 7 in appendix B. The coefficient of concordance of this
model based on the development set is 0.8898.

We estimated a multivariate logit model with expired duration, credit
limit, age, overdue payment, mortgage type, loan to value and loan to in-
come as explanatory variables. Here mortgage type can take on 4 values,
annuity, life, linear and other mortgages, the reference type is interest-only.
All variables, except for age, turn out to be significant. Next a model is de-
veloped omitting age, the estimated coefficients of this model can be found
in tables 2. The results show that all parameters are significant. Wald
statistics (not shown here) show that the four coefficients of mortgage type
are jointly significant. This model is referred to as the starting model. The
model we use as starting model is different from the model estimated by
Friesland Bank. When we compare the results of the models we see that the
signs of the coefficients are the same.

Table 2: Estimates starting model.

coef std.err z p-value
intercept −6.336 0.143 −44.336 0.000
expired.duration −0.005 0.001 − 5.470 0.000
credit.limit 0.007 0.001 11.312 0.000
overdue.payment 2.961 0.110 26.843 0.000
mortgage.type=annuity 0.600 0.110 5.451 0.000
mortgage.type=life 0.269 0.096 2.809 0.005
mortgage.type=linear 0.657 0.195 3.359 0.001
mortgage.type=other 0.435 0.180 2.418 0.016
loan.to.value 0.006 0.001 6.426 0.000
debt.to.income 0.099 0.023 4.287 0.000

4.2 Theoretical Validation

The results of the starting model show that expired duration has a nega-
tive relationship with the probability of default. This means that when a
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mortgage matures the probability of default is lower. The binary variable
overdue payment has a positive influence on the PD. So when a mortgage
is in arrear the probability of default is higher. The coefficients of mortgage
type are positive, so in comparison to the reference category interest-only,
the categories annuity, life, linear and other result in a higher PD. Loan to
value and debt to income have positive relation with the PD. The signs of
the variables are in correspondence with expectations.

4.3 Data Validation

The data are representative for the underlying population since we use the
complete portfolio of mortgages.

Some of the variables are not measured correctly. In the data set for
some missing values a 0 is inserted, so we can not determine for which case
the value is missing and for which case the value truely is 0. The variables
which are not measured correctly can not be used to predict the probability
of default.

For some cases the values for certain variables are missing, we use com-
plete case analysis to estimate the models.

4.4 Statistical Validation

4.4.1 Reproducibility of Research

Friesland Bank already developed a logit model to estimate the probability of
default. However, we can not reproduce the exact outcome of this research.
One reason is the data we use are different from the data used by the bank.
The bank used a data set with measurements on eight different dates, instead
of four. A second reason is how missing values are treated. We used complete
case analysis to handle missing values. Friesland Bank used some kind of
imputation method, so they included some additional information.

4.4.2 Stability of Parameters

To determine whether the parameters are stable over time, we perform the
test described in section 3.2.2. We test whether the parameter vector β
is stable over time, the value of the test statistics is 12.630. We use the
bootstrap method with B = 2000 to determine the p-value and find a p-
value of 0.372. So, the null hypothesis of an unknown break is rejected. Or
stated differently, there is no structural break in the period from 2000 till
2003.

4.4.3 Choice of Functional Form

In the models estimated so far, we assumed the variables have a linear effect
on the logit of Y = 1. In this part we use the restricted cubic splines to
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test whether the continuous variables have a nonlinear effect. It turns out
that credit limit has a nonlinear effect. We estimate a model containing
nonlinear terms of the variable credit limit using a restricted cubic spline
with 5 knots. The results are shown in tables 8 and 9 in appendix B. The
coefficient of the nonlinear terms of credit limit is significantly different from
zero, so the variable has a nonlinear effect.

4.4.4 Discrimination

In the analysis above we developed two models, one is the starting model
and the other is the model with a spline function. Next we determine the
discrimination of the two models. For now we focus on two measures of
discrimination, coefficient of concordance (c) and Brier score (B). The values
of the measures are shown in table 3.

Table 3: Discrimination of starting and spline model.

c B

starting model 0.914 0.015
spline model 0.917 0.015

The results show that the Brier scores of the models are the same and are
also very close to zero, which can be interpreted as a small sum of squares
of the residuals. The coefficient of concordance of the model with spline
function is higher compared to the starting model, so the model with spline
function discriminates slightly better than the starting model.

4.4.5 Calibration

The calibration of the two models is analysed by means of calibration plots
(see figures 2(a) and 2(b)). The number of observations used in the model
development is n = 46212. The other information on the horizontal axis
will be explained in section 4.4.6. The diagonal line show the ideal case of
perfect calibration. The dotted line shows the apparent calibration of the
model. The straight line will be discussed in section 4.4.6. Both calibration
plots show similar pattern. For predicted PDs above 0.4 the models are
both not well calibrated. When the focus is on PDs below 0.4 we see the
model with spline function is better calibrated than the starting model. Or
stated differently, the model with spline function is slightly better in making
unbiased estimates of the PDs.

The calibration plots show how well the model is calibrated based on
the development set. The plots showed the model is better calibrated for
lower probabilities. A natural step now is to quantify the calibration for
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(a) Starting model.
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(b) Spline model.

Figure 2: Calibration plots.

observations with low estimated probability of default. In order to do so we
would like to determine calibration slope and intercept for a subset of the
observations. The data set can be divided in subsets based on the estimated
probability of default. For example the quartiles of the estimated probabil-
ities can be used as cut off values. Next the calibration slope and intercept
can be determined for the subsets. However, in practice this strategy is not
useful since the subset with low PD contains very few defaults which makes
it very difficult to estimate a logit model.

4.4.6 Out-of-sample Performance and Bootstrap

Above we determined how well the two models perform on the data set
which is also used for developing the model. In this section we determine
the performance of the model on a different data set. We use the coefficient
of concordance (c) and Brier score (B) to determine the discrimination and
use calibration intercept and slope (γ0 and γ1) for calibration of the models.

First we consider out-of-sample performance within the time period. The
data set is divided into two subsets, the development set contains a random
sample of 75% of the complete data set. The remaining data are used
as test set. The results are shown in table 4. The table also shows the
measures calculated on the development set. Note γ0 and γ1 estimated on
the development set are always equal to 0 and 1, respectively. As we already
concluded in the previous sections, results here also show the model with
spline function discriminates slightly better and is also better calibrated
compared to the starting model.

Second we consider out-of-sample performance outside the time period.
The data set is divided into two subsets, the first containing the years 2000,
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Table 4: Out-of-sample performance within the time period.

c B γ0 γ1

starting model - development set 0.916 0.015 0.000 1.000
starting model - test set 0.912 0.016 −0.096 0.941
spline model - development set 0.918 0.014 0.000 1.000
spline model - test set 0.919 0.016 0.000 0.973

2001 and 2002 and the second contains 2003. Results of out-of-sample per-
formance outside the time period are very similar to the results within the
time period. So again we see the model with spline function performs a little
better than the starting model.

Table 5: Out-of-sample performance outside the time period.

c B γ0 γ1

starting model - development set 0.912 0.014 0.000 1.000
starting model - test set 0.917 0.016 0.093 0.991
spline model - development set 0.918 0.014 0.000 1.000
spline model - test set 0.921 0.015 0.116 1.006

Next we use the bootstrap method described in subsection 3.2.6 with 40
bootstrap samples. The calibration plots are shown in figures 2(a) and 2(b).
The straight lines in the plots show the bias corrected calibration plot using
the bootstrap method described in subsection 3.2.6. The error referred to is
the mean absolute error below the horizontal axis is the difference between
the predicted value and the corresponding bias-corrected value. The plots
show both models are not well calibrated for high probabilities. For low
probabilities the model with spline function is better calibrated than the
starting model. The results of the measures mentioned above are shown in
table 6.

Table 6: Bootstrap performance.

c B γ0 γ1

starting model 0.915 0.015 −0.023 0.992
spline model 0.918 0.015 −0.064 0.978

Again results show that the model with spline function discriminates
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little better and the starting model is better calibrated.

4.4.7 Statistical Validation in Conclusion

Above we applied the methodology of section 3.2 to a data set on mortgages
of Friesland Bank. The overall conclusion we can draw from the results is the
model with spline function performs slightly better than the starting model.
Since we were unable to reproduce the exact results obtained by Friesland
Bank we can not compare their model in depth to the model with spline
function. However, we can conclude based on the coefficient of concordance
that the model with spline function performs sligthly better.

5 Conclusion

The new Basel Capital Accord forces banks to develop models to estimate
the probability of default. These models need to be validated on a contin-
uous basis. However, there are no clear guidelines as to what constitutes
proper validation. In this paper we try to fill this gap. We give an overview
of methods used to analyze and validate logit models and in particular we
focus on valiation of the effects of risk drivers. Validation is classified into
three classes: theoretical validity, data validity and statistical validity. The-
oretical validity reviews the theories and assumptions underlying the pro-
posed model, data validity is about the accuracy of the data and statistical
validity is concerned with the use and errors of the model.

The main focus of this paper is on statistical validation. Traditionally
validation is focused on PDs by means of discrimination and calibration. In
case of a portfolio of mortgages to individuals a bank need to estimate a
logit model that forms the basis of the PDs. In this paper we argue that
the parameter vector of the model also need to be validated. We validate
the parameter vector by determining reproducibility of research, stability
of parameters, choice of functional form, out-of-sample performance and
bootstrapping.

We conclude that when the model underlying the PDs is estimated within
the bank, validation can be more rigorous when it consists of two parts, val-
idation of the PDs and validation of the parameter vector. Validation of the
PDs will give information on how well the model fits the data and validation
of the parameter vector will provide information on where improvement of
the model can be gained. The classification given in this paper can be used
to systematically validate a default model, application will lead to a better
model.

We made several assumptions in our analysis to make the calculations
rather simple. Some of these assumption are not very realistic. In future
research these assumptions must be reconsidered. We used complete case
analysis to handle missing values. However, this method is only valid when
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the missingness is not related to the data (observed or missing), which might
not be a realistic assumption. We also assumed that the observations are
independent. The data set contains information on borrowers measured on
four different dates. So, in principle, a borrower can occur four times in the
data set. This dependence is ignored in this paper. In a future research
this dependence can be taken into consideration. In the theoretical part of
this paper we provided a large number of measurements to use in model
validation. In the empirical part we did not calculate all the measurements.
In future research the remaining measurements can be used in order to make
a better comparison amongst the measurements.
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A Explanation of the Variables

Loan to value is the ratio between the original amount of debt and the appraisal value of the
house, expressed as a percentage. For the cases where loan to value exceeds 400, we inserted a
value 0 and treated the variable as a missing value. Debt to income is the ratio between the
original amount of debt and income of the borrower, expressed as a percentage. The cases where
debt to income exceeds 5 are truncated at 5. Expired duration is the period between the start
of the contract and the snapshot, measured in months. The variable mortgage type used by the
bank is an indicator variable which states whether the loan is of a linear type or of a different
type. The variable mortgage type we use can take on 4 values, the mortgages types are annuity,
life, linear and other mortgages. The reference mortgage type is interest-only, the coefficients of
the 4 types indicates the effect on the probability of default when the borrower has mortgage type
different from interest-only. Overdue payment is an indicator variable which states whether there
was an overdue amount during the 12 months prior to the snapshot. Credit limit is the average
percentage of the credit limit that is taken up during the last 3 months prior to snapshot. The
age of the borrower is measured in years at the snapshot.

B Default Models

Table 7: Logit model Frieslandbank.

coef.
intercept −5.864
expired.duration −0.007
expired.duration missing −0.257
overdue.payment 3.201
mortgage.type=linear 0.514
loan.to.value 0.004
loan.to.value missing 0.544
debt.to.income 0.125
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Table 8: Estimates spline model.

coef std.err z p-value
intercept −6.530 0.147 −44.365 0.000
expired.duration −0.006 0.001 − 5.874 0.000
credit.limit 0.066 0.004 15.098 0.000
credit.limit’ −0.175 0.012 −14.090 0.000
overdue.payment 2.212 0.124 17.912 0.000
mortgage.type=annuity 0.568 0.110 5.165 0.000
mortgage.type=life 0.233 0.096 2.426 0.015
mortgage.type=linear 0.684 0.196 3.495 0.000
mortgage.type=other 0.441 0.181 2.429 0.015
loan.to.value 0.006 0.001 6.316 0.000
debt.to.income 0.095 0.023 4.124 0.000

Table 9: Wald statistics spline model.

χ2 df p-value
expired.duration 34.499 1 0
credit.limit 317.847 2 0

nonlinear 198.534 1 0
overdue.payment 320.822 1 0
mortgage.type 35.014 4 0
loan.to.value 39.896 1 0
debt.to.income 17.005 1 0
TOTAL 1606.001 10 0
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