Distributed supply-demand balancing and the physics of smart energy systems

Jacquelien M.A. Scherpen
Jan C. Willems Center for Systems and Control
University of Groningen

Joint work with a.o. Gunn K.H. Larsen, Nicky van Foreest, Desti Alkano, Bao Nguyen, Arjan van der Schaft, Fiaz Shaik, Daniele Zonetti, Romeo Ortega,....

15-17 July 2015
European Control Conference, Linz
Supply demand matching at an economic level: distributed optimal control via dual decomposition.
Supply demand matching at an economic level: distributed optimal control via dual decomposition.

Briefly, a power systems approach via energy based modeling. Useful for stability and stabilization, also for optimization, pricing, etc.
Supply demand matching at an economic level: distributed optimal control via dual decomposition.

Briefly, a power systems approach via energy based modeling. Useful for stability and stabilization, also for optimization, pricing, etc.?

Two decoupled layers?
Outline

1. Distributed optimal control of the power grid
   - The production side
   - Demand side control

2. Market embedding

3. Grid integration
   - Distributed control of the gas grid
   - Distributed control with power to gas facilities

4. The physics of the power grid
1. Distributed optimal control of the power grid
   - The production side
   - Demand side control

2. Market embedding

3. Grid integration
   - Distributed control of the gas grid
   - Distributed control with power to gas facilities

4. The physics of the power grid
An example project: The Flexines Project

Gas important in Groningen area, micro-CHP of interest for distributed generation.

- **Business case**: Estimation that in 2020 1 million \( \mu \)CHP units in the Netherlands, in 2030 4 million.
The Flexines Project

Goal  Develop Energy Management System (EMS) based on prices, helping user to regulate costs.

Role  Network balance and prices.
The Flexines Project

Goal  Develop Energy Management System (EMS) based on prices, helping user to regulate costs.
Role  Network balance and prices.

- Local production, lower transmission losses.
- No longer centralized top-down control.
- End users also producers, prosumers.
- Stability of the network.
- Need for coordination.
Smart grid experiment in suburb Groningen

- Place: An area in Groningen.
- Field test with Power-Matcher concept.
- Households with controllable devices (washing machines, heat pump, $\mu$CHP, batteries, solar panels, etc.)
- Multi-agent accumulating bid curves in a tree structure. Microeconomics used to determine equilibrium price.
- No forecasting included.
Another alternative: Distributed control

- Interested in an alternative way of coordination.
- Distributed control → Local price communication between neighbors.
Another alternative: Distributed control

- Interested in an alternative way of coordination.
- Distributed control → Local price communication between neighbors.
- The micro Combined Heat Power (μCHP) system is an option for local production (e.g., Houwing et al. 2011).
  - Overall efficiency of the μCHP can be as high as 90%.
  - Electrical output is typical 1kWh.
Network control issues

- Imbalance zero.
- Avoid peaks → may allow more connections on one transformer.
- Lower transmission losses → local delivery.
- Delivery certainty.
- Local optimization versus global optimization.
Problem formulation

Minimize imbalance and costs of production given the imbalance equations per household, i.e., \( \min_\mathbf{u} \mathbf{x}^T \mathbf{x} + \mathbf{u}^T \mathbf{u} \).
Problem formulation

Minimize imbalance and costs of production given the imbalance equations per household, i.e., \( \min_u \sum x^T x + u^T u \).

\( x_i[k] \) is imbalance information household \( i \) at time \( k \). Then

\[
x_i(k + 1) = A_{ii}x_i(k) + \sum A_{ij}x_j(k) + u(k) + w_i(k)
\]

\( x_i \) imbalance information, \( w_i \) change in demand (white noise), \( u_i \) change in production. NB: real imbalance \( \tilde{x}_i \): \( A_{ij} = 0, A_{ii} = 1 \).
Minimize imbalance and costs of production given the imbalance equations per household, i.e., \( \min_u \sum x^T x + u^T u. \)

\( x_i[k] \) is imbalance *information* household \( i \) at time \( k \). Then

\[
x_i(k + 1) = A_{ii}x_i(k) + \sum A_{ij}x_j(k) + u(k) + w_i(k)
\]

\( x_i \) imbalance information, \( w_i \) change in demand (white noise), \( u_i \) change in production. NB: real imbalance \( \tilde{x}_i \): \( A_{ij} = 0, A_{ii} = 1. \)
R1 $A_{ij} \neq 0$ if and only if information is exchanged from agent $j$ to agent $i$.

R2 All weights are non-negative: $A_{ij} \geq 0$, $i, j = 1, \ldots, n$.

R3 All columns sum up equal to one:
$$\sum_{i=1}^{n} A_{ij} = 1, \ j = 1, \ldots, n.$$  

R4 The graph corresponding to information matrix $A$ is strongly connected.
Network model - Information weights

R1 \( A_{ij} \neq 0 \) if and only if information is exchanged from agent \( j \) to agent \( i \).

R2 All weights are non-negative: \( A_{ij} \geq 0 \), \( i, j = 1, \ldots, n \).

R3 All columns sum up equal to one:
\[
\sum_{i=1}^{n} A_{ij} = 1, \; j = 1, \ldots, n.
\]

R4 The graph corresponding to information matrix \( A \) is strongly connected.

Consequence, if \( \tilde{x}(0) = x(0) \), then
\[
\sum_{i=1}^{n} x_i(k) = \sum_{i=1}^{n} \tilde{x}_i(k), \; \forall \; k \geq 0,
\]
where \( \tilde{x} \) is the real imbalance, and \( x \) the imbalance information.
Game theoretic interpretation from economics literature, dual decomposition in optimization treated in e.g. (Boyd and Vandenberghe 2004).

Based on price mechanisms in linear quadratic team theory and dynamic dual decomposition for distributed control, (Rantzer 2007, 2009).

“Distributed model predictive control with suboptimality and stability guarantees” (Giselsson and Rantzer 2013).

Recently applied to production side control with micro CHP’s and heat pumps, (Larsen, van Foreest, Scherpen, 2013, 2014).
Central MPC

\[
\begin{align*}
\min_{\hat{u}, \hat{x}} & \quad \sum_{k=N}^{k+N} \sum_{i=1}^{n} l_i(\hat{x}_i(\tau), \hat{u}_i(\tau)) \\
\text{s.t. for all } & \quad i, \tau \\
\hat{x}_i(\tau + 1) & = A_{ii} \hat{x}_i(\tau) + \sum_{j \in N_i} A_{ij} \hat{x}_j(\tau) + B_{ii} \hat{u}_i(\tau), \\
\hat{x}_i(\tau)_{\tau=k} & = x_i(k), \\
\hat{x}_i(\tau) & \in X_i, \quad \hat{u}_i(\tau) \in U_i,
\end{align*}
\]
From a centralized MPC to a distributed MPC

Central MPC

\[
\begin{align*}
&\min_{\hat{u}, \hat{x}} \sum_{\tau=k}^{k+N} \sum_{i=1}^{n} l_i(\hat{x}_i(\tau), \hat{u}_i(\tau)) \\
&\text{s.t. for all } i, \tau \\
&\hat{x}_i(\tau + 1) = A_{ii} \hat{x}_i(\tau) + \sum_{j \in N_i} A_{ij} \hat{x}_j(\tau) + B_{ii} \hat{u}_i(\tau), \\
&\hat{x}_i(\tau)_{\tau=k} = x_i(k), \\
&\hat{x}_i(\tau) \in X_i, \ \hat{u}_i(\tau) \in U_i,
\end{align*}
\]

Distributed MPC

\[
\begin{align*}
&\min_{\hat{u}_i, \hat{x}_i, \hat{v}_i} \sum_{\tau=k}^{k+N} V_i^\text{agent} \\
&\text{s.t. for all } \tau \text{ it holds:} \\
&\hat{x}_i(\tau + 1) = A_{ii} \hat{x}_i(\tau) + \hat{v}_i(\tau) + B_{ii} \hat{u}_i(\tau), \\
&\hat{x}_i(\tau)_{\tau=k} = x_i(k), \\
&\hat{x}_i(\tau) \in X_i, \ \hat{u}_i(\tau) \in U_i,
\end{align*}
\]

with sub-gradient iterations

\[
\begin{align*}
&\hat{\lambda}_{i,r+1}(\tau) = \\
&\hat{\lambda}_{i,r}(\tau) + \gamma_{i,r} [\hat{v}_{i,r}(\tau) - \sum_{j \in N_i} A_{ij} \hat{x}_{j,r}(\tau)]
\end{align*}
\]

\[
V_i^\text{agent} = \left( l_i(\hat{x}_i(\tau), \hat{u}_i(\tau)) + \hat{\lambda}_i(\tau) \hat{v}_i(\tau) - \sum_{j \in N_i} \hat{\lambda}_j(\tau) A_{ji} \hat{x}_i(\tau) \right)
\]
Our electricity grid

Current grid:

Possible fully distributed topology:
Heat demand is leading, i.e., it is a constraint that the heat demand has to be met with local devices.

Constraints on production side, i.e., $\mu$CHP, and heat pump (off-time, not on for very small demand, maximum production level, etc.), of which some are non-convex.

Information exchange with neighbors.
Networks of households with $\mu$CHP and heat pumps

- Heat demand is leading, i.e., it is a constraint that the heat demand has to be met with local devices.
- Constraints on production side, i.e., $\mu$CHP, and heat pump (off-time, not on for very small demand, maximum production level, etc.), of which some are non-convex.
- Information exchange with neighbors.
- Via game theory and dual decomposition price mechanism interpretation.
- Control of the imbalance can be done fully distributed at each household with only information of the neighbors.
- Implementation feasible, imposing constraints.
Realistic electrical demand obtained from field tests
Optimal control $u(k)$
Optimal control $u(k)$

Zoom
By embedding the electrical power grid in the dual decomposition framework, distributed suboptimal control of decentralized power generation can be achieved.

Method can also capture current network structure.

Information from physical far away neighbours set to zero. This is promising with respect to computational complexity, and reduces transportation costs.

Published in IEEE Transactions on Smart Grid (2013, 2014), and Applied Mathematical Modelling (2014).
By embedding the electrical power grid in the dual decomposition framework distributed suboptimal control of decentralized power generation can be achieved.

- Method can also capture current network structure.
- Information from physical far away neighbours set to zero. This is promising with respect to computational complexity, and reduces transportation costs.
- Propose that the structure of the network in the future may change when there is a high share of controllable decentralized generation present.
- Published in IEEE Transactions on Smart Grid (2013, 2014), and Applied Mathematical Modelling (2014).
To do: feasible, and optimal storage topology to be incorporated in the modeling.

To do: price interpretation. Shadow prices are marginal costs made to decrease limitations and circumvent bottle necks. What are real prices?

How to involve demand control? Include additional models.

Example: demand side control with a washing machine (Larsen et al., 2013).
A network of households with Washing Machines

Decide about best starting time for washing machine:

- Suppose 50% of the households do one wash per day
- Explore flexibility
- The household specifies end time $T_{\text{finish}}$
- Flatten net power load
The households in the network is a subset of all households in the Power Network

Two-way communication

**Global goal:** flatten total power demand in the network

**Local decision:** when to turn on the Washing Machine
Network model

- \( n \) households
- **Demand**: \( d_i(k) = f_i(k) + g_i(k) \)
- **Dynamics of Demand**: \( d_i(k+1) = d_i(k) + u_i(k) + w_i(k) \)
- Change in washing machine demand: \( u_i(k) = f_i(k+1) - f_i(k) \)
- Change in rest of demand: \( w_i(k) = g_i(k+1) - g_i(k) \)
- **Demand information**:
  \( x_i(k+1) = A_{ii}x_i(k) + \sum_{\varnothing \in N_i} A_{ij}x_j(k) + u_i(k) + w_i(k) \)
not loaded $\rightarrow$ cannot run
not running $\rightarrow$ electric demand equals zero
starting $\rightarrow$ run until end of cycle
running $\rightarrow$ follow the demand pattern
at end of cycle $\rightarrow$ it stops and gets unloaded
loaded $\rightarrow$ forced to be finished within $T_{\text{finish}}$ time-steps
Introduce binary variables and IF AND statements

\[ \delta_i(k) = \begin{cases} 
1 & \text{running,} \\
0 & \text{otherwise,} 
\end{cases} \]

Num 3 as an example:

\[ \delta_i(k) = 1 \land t_{i, on}(k) < T_{program} \Rightarrow \delta_i(k + 1) = 1 \]

Implemented as:

\[ \hat{\delta}_i(\tau) T_{program} - \hat{t}_{i, on}(\tau) \leq \hat{\delta}_i(\tau + 1) T_{program} \]
Settings

- 50 % load a wash
- Wash must finish before: \( T_{i,f} = 4 \text{ h 40 minutes} \)
- Wash: 1h 30 minutes
- \( \Delta k = 7 \text{ minutes} \)
- Simulation-time: \( T_{\text{end}} = 7\text{h} \)
- \( V = \sum_{k=0}^{T_{\text{end}}} \sum_{i=1}^{n} [x_i(k) - a]^2 \)
- \( a = 0.5 \text{ kW} \)
- \( \gamma_{i,r} = 0.001 \)
- \( |\lambda_{i,r}(\tau) - \lambda_{i,r-1}(\tau)| < 0.05 \)
Settings

- 50 % load a wash
- Wash must finish before: $T_{i,f} = 4 \text{ h } 40 \text{ minutes}$
- Wash: 1h 30 minutes
- $\Delta k = 7 \text{ minutes}$
- Simulation-time: $T_{\text{end}} = 7\text{h}$
- $V = \sum_{k=0}^{T_{\text{end}}} \sum_{i=1}^{n} [x_i(k) - a]^2$
- $a = 0.5 \text{ kW}$
- $\gamma_{i,r} = 0.001$
- $|\lambda_{i,r}(\tau) - \lambda_{i,r-1}(\tau)| < 0.05$

\[ A = \begin{bmatrix}
0.6 & 0.2 & 0 & 0 & \cdots & 0.2 \\
0.2 & 0.6 & 0.2 & 0 & \cdots & 0 \\
0 & 0.2 & 0.6 & 0.2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0.2 & 0 & 0.6 & 0.2 \\
0.2 & \cdots & 0 & 0 & 0.2 & 0.6
\end{bmatrix} \]

**NB:** non-convexity!
20 households - 10 washing machines

\[ V = 457.2 \text{ kW}^2 \]

\[ V = 403.6 \text{ kW}^2 \]


Computations are well scalable.
Further study

- Must choose information exchange matrix $A$ wisely.
- Multiple types of devices.
- Connect to local production of power as presented before. Ongoing work.
Further study

- Must choose information exchange matrix $A$ wisely.
- Multiple types of devices.
- Connect to local production of power as presented before. Ongoing work.
- Scalability of simulations, so far simulations up to 10,000 households via parallel implementation goes well.
- Combination of hierarchical scheduling methods with distributed control, embedding in market structure $\rightarrow$ fit in Universal Smart Energy Framework.
1. Distributed optimal control of the power grid
   - The production side
   - Demand side control

2. Market embedding

3. Grid integration
   - Distributed control of the gas grid
   - Distributed control with power to gas facilities

4. The physics of the power grid
Market in the Netherlands deregulated, separate price for network transport and energy delivery.

Transport can be accounted for by choices in A matrix, i.e., low weight corresponds to expensive transport.

However, supplier market is deregulated, physical neighbors may have different suppliers → how to embed distributed control algorithms?
Market embedding

Ongoing work to embed distributed algorithms in USEF (Universal Smart Energy Framework) → Collaboration within a consortium.
USEF in the operation phase

Ongoing work:

- Extra aggregator layer. Distributed control per layer, combined distributed and hierarchical control, how to guarantee performance?
USEF in the operation phase

Ongoing work:

- Extra aggregator layer. Distributed control per layer, combined distributed and hierarchical control, how to guarantee performance?
- Goal function initialized from day ahead planning, and then adapted in the operation phase depending on the real loads. Depends on both fixed and flexible load. How to embed?
USEF in the operation phase

Ongoing work:

- Extra aggregator layer. Distributed control per layer, combined distributed and hierarchical control, how to guarantee performance?
- Goal function initialized from day ahead planning, and then adapted in the operation phase depending on the real loads. Depends on both fixed and flexible load. How to embed?
- Role of DSO, put capacity limitations in constraints. Feasibility analysis needed.
Ongoing work:

- Extra aggregator layer. Distributed control per layer, combined distributed and hierarchical control, how to guarantee performance?
- Goal function initialized from day ahead planning, and then adapted in the operation phase depending on the real loads. Depends on both fixed and flexible load. How to embed?
- Role of DSO, put capacity limitations in constraints. Feasibility analysis needed.
- Collaboration between market parties?
1. Distributed optimal control of the power grid
   - The production side
   - Demand side control

2. Market embedding

3. Grid integration
   - Distributed control of the gas grid
   - Distributed control with power to gas facilities

4. The physics of the power grid
Distributed control of the gas grid

Smart gas grid project.

- Local farmers produce biogas.
- Optimize real costs.
- High, medium and low pressure gas grid.
- What is the optimal size of storage?
- Inclusion of lorry’s picking up gas from farmers.
- Micro-grid for farmers, and connection to low pressure grid plus lorry’s to control capacity. Alkano et al., 2014.

![Diagram of gas grid control system]
Distributed control with power to gas facilities

- Power to gas offers opportunities for storage of power in the form of hydrogen.
- Can be done locally.
- Hydrogen can be used for mobility/industry, injected into the natural gas grid (limited), or reconverted into electrical power.
Schematically, with distributed PtG facilities:

- Presentation tomorrow. Two layer optimization problem: maximize PtG’s profit, and DSO’s of three grids have to avoid overloading of grids. Builds on Biegel et al. 2012.
Distributed control with power to gas facilities

Schematically, with distributed PtG facilities:

- Solar
- Wind
- Other renewable
- Electrolyser
- Fuel cell
- Storage
- Mobility/industry
- Flaring
- Gas grid
- Power grid
- Hydrogen

Presentation tomorrow. Two layer optimization problem: maximize PtG’s profit, and DSO’s of three grids have to avoid overloading of grids. Builds on Biegel et al. 2012.

Ongoing: asynchronous information exchange.
Supply demand matching at an economic level: distributed optimal control via dual decomposition.
Supply demand matching at an economic level: distributed optimal control via dual decomposition.

Briefly, the physics of the grid, a power systems approach via energy based modeling. Starting research, useful for stability and stabilization, also for optimization, pricing, etc.?
Recall

- Supply demand matching at an economic level: distributed optimal control via dual decomposition.

- Briefly, the physics of the grid, a power systems approach via energy based modeling. Starting research, useful for stability and stabilization, also for optimization, pricing, etc.?

Two decoupled layers?
2. Distributed optimal control of the power grid
   - The production side
   - Demand side control

3. Market embedding

4. Grid integration
   - Distributed control of the gas grid
   - Distributed control with power to gas facilities

4. The physics of the power grid
The grid and the synchronous machine

Future power grid, EJC special issue paper 2013.
The physics of the grid

From a power systems perspective:

- Models of the power systems (synchronous generators), interconnected via transmission lines (often approximated by pi models, a resistor, inductor and two grounded capacitors).
From a power systems perspective:

- Models of the power systems (synchronous generators), interconnected via transmission lines (often approximated by pi models, a resistor, inductor and two grounded capacitors).
- Classical models used by power systems engineers not always suitable to study the embedding of renewables.
From a power systems perspective:

- Models of the power systems (synchronous generators), interconnected via transmission lines (often approximated by pi models, a resistor, inductor and two grounded capacitors).
- Classical models used by power systems engineers not always suitable to study the embedding of renewables.
- Renewables embedding are known to cause large fluctuations, sometimes causing large, and not always predictable power outages.
Control system study towards the oscillators, swing equations (Dörfler, Bullo, 2012). Swing equations limited due to missing transient response of electrical part.
Control system study towards the oscillators, swing equations (Dörfler, Bullo, 2012). Swing equations limited due to missing transient response of electrical part.

Recently, study to consider the full models (including the electrical part) interconnected through the grid (Shaik, Zanotti, Ortega, Scherpen, van der Schaft 2013). However, stability analysis only achieved for one synchronous machine connected to an infinite bus.
The physics of the grid

- Control system study towards the oscillators, swing equations (Dörfler, Bullo, 2012). Swing equations limited due to missing transient response of electrical part.
- Recently, study to consider the full models (including the electrical part) interconnected through the grid (Shaik, Zanotti, Ortega, Scherpen, van der Schaft 2013). However, stability analysis only achieved for one synchronous machine connected to an infinite bus.
- Also, frequency deviations coupled to pricing mechanisms and stability for the swing equations (Jokic 2009, Bürger, De Persis, 2013, 2014).

Jacquelien Scherpen
Power systems in the grid

Example network:

Corresponding graph:

The incidence matrix and the Kirchhoff laws, together with the 8th order models of the synchronous generators provide a port-Hamiltonian model of the overall system.
A Port Hamiltonian model of the grid

States of a synchronous generator:
- 3 phase rotor and stator flux linkages (6 in total) $\psi_r, \psi_s$.
- the momentum $p$.
- the angle $\theta$.
A Port Hamiltonian model of the grid

States of a synchronous generator:
- 3 phase rotor and stator flux linkages (6 in total) $\psi_r, \psi_s$.
- the momentum $p$.
- the angle $\theta$.

States of the transmission lines:
- Flux of the inductor $\psi_L$.
- Charge on the capacitors $q_c$.
A Port Hamiltonian model of the grid

States of a synchronous generator:
- 3 phase rotor and stator flux linkages (6 in total) $\psi_r, \psi_s$.
- the momentum $p$.
- the angle $\theta$.

States of the transmission lines:
- Flux of the inductor $\psi_L$.
- Charge on the capacitors $q_c$.

Inputs:
- Electrical field $E_f$.
- Mechanical torque $T_m$.

Together with the incidence matrix, a PH model is obtained.
Equilibrium points and stability analysis

- No equilibrium points, i.e., angle constantly changes for a fixed frequency.
- Angle difference between generators.
- Stability analysis not straightforward from Hamiltonian, also not after Park-Blondel transformation.
- Possible for synchronous machine connected to an infinite bus (SMIB) under assumptions that some losses are zero, with help of forced Hamiltonian systems analysis (Maschke et al., 2000).
Lyapunov function

\[ V(x) = H(x) - \left( \frac{E_f \psi_f}{r_f} + T_m \tan^{-1} \left( \frac{\psi_q}{\psi_d} \right) \right) \]

with \( \psi_q, \psi_d, \psi_f \) transformed fluxes.
Lyapunov function

\[ V(x) = H(x) - \left( \frac{E_f \psi_f}{r_f} + T_m \tan^{-1} \left( \frac{\psi_q}{\psi_d} \right) \right) \]

with \( \psi_q, \psi_d, \psi_f \) transformed fluxes.

Model is rather complex.

- To consider utility optimization, a PH model can also be made of the swing equations, only taking the mechanical structure into account. Inverters (for e.g. the coupling of solar panels to the AC grid) and load models can be added as well (Monshizadeh, De Persis 2015, Stegink et al. 2015).

Other optimizations in relation to the frequency, and in different settings (e.g., micro-grids) are available.

However, all static optimizations, dynamics not taken into account yet. Topic of ongoing work.
Utility optimization

Model is rather complex.

- To consider utility optimization, a PH model can also be made of the swing equations, only taking the mechanical structure into account. Inverters (for e.g. the coupling of solar panels to the AC grid) and load models can be added as well (Monshizadeh, De Persis 2015, Stegink et al. 2015).

- Other optimizations in relation to the frequency, and in different settings (e.g., micro-grids) are available.
Utility optimization

Model is rather complex.

- To consider utility optimization, a PH model can also be made of the swing equations, only taking the mechanical structure into account. Inverters (for e.g. the coupling of solar panels to the AC grid) and load models can be added as well (Monshizadeh, De Persis 2015, Stegink et al. 2015).

- Other optimizations in relation to the frequency, and in different settings (e.g., micro-grids) are available.

However, all static optimizations, dynamics not taken into account yet. Topic of ongoing work.
How to proceed?

- How to study the grid in the multiple generator, multiple load case with different characteristics, using the passivity properties.
How to proceed?

- How to study the grid in the multiple generator, multiple load case with different characteristics, using the passivity properties.
- Embedding of multi-terminal HVDC grid in the AC grid. Study of mHVDC ongoing, see Doria, Olm, Scherpen 2015, Zonetti, Ortega 2015.
How to proceed?

- How to study the grid in the multiple generator, multiple load case with different characteristics, using the passivity properties.
- Embedding of multi-terminal HVDC grid in the AC grid. Study of mHVDC ongoing, see Doria, Olm, Scherpen 2015, Zonetti, Ortega 2015.
- How to couple the economic and physical layer? Pricing via frequency deviations.
How to proceed?

- How to study the grid in the multiple generator, multiple load case with different characteristics, using the passivity properties.
- Embedding of multi-terminal HVDC grid in the AC grid. Study of mHVDC ongoing, see Doria, Olm, Scherpen 2015, Zonetti, Ortega 2015.
- How to couple the economic and physical layer? Pricing via frequency deviations.
- How about voltage and angle stability?
How to proceed?

- How to study the grid in the multiple generator, multiple load case with different characteristics, using the passivity properties.
- Embedding of multi-terminal HVDC grid in the AC grid. Study of mHVDC ongoing, see Doria, Olm, Scherpen 2015, Zonetti, Ortega 2015.
- How to couple the economic and physical layer? Pricing via frequency deviations.
- How about voltage and angle stability?
- How to embed in the market structures available?
- .........
Supply demand matching at an economic level: distributed optimal control via dual decomposition.
Supply demand matching at an economic level: distributed optimal control via dual decomposition.

The physics of the grid, a power systems approach energy based modeling. Useful for stability and stabilization, also for optimization, pricing, etc.?
Supply demand matching at an economic level: distributed optimal control via dual decomposition.

The physics of the grid, a power systems approach energy based modeling. Useful for stability and stabilization, also for optimization, pricing, etc.?

Two decoupled layers?
QUESTIONS?