Publication

Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure

Westenbrink, B. D., Ruifrok, W-P. T., Voors, A. A., Tilton, R. G., van Veldhuisen, D. J., Schoemaker, R. G., van Gilst, W. H. & de Boer, R. A., 1-Jul-2010, In : Cardiovascular Research. 87, 1, p. 30-39 10 p.

Research output: Contribution to journalArticleAcademicpeer-review

We intended to delineate the mechanisms of erythropoietin (EPO)-induced cardiac vascular endothelial growth factor (VEGF) production and to establish if VEGF is crucial for EPO-induced improvement of cardiac performance.

The effects of EPO on VEGF expression were studied in cultured cardiac cells and EPO-treated hearts. The role of VEGF in EPO-induced neovascularization was studied with two distinct VEGF-neutralizing antibodies or irrelevant control IgG in an aortic sprouting assay and in rats with heart failure (HF) after myocardial infarction (MI) treated with EPO. EPO-alfa (10 IU/mL) was used in vitro and darbepoetin alfa (40 mu g/kg/3 weeks, starting 3 weeks after MI) in vivo. EPO stimulated VEGF mRNA expression through the signal transducers and activators of transcription-3 (STAT-3) pathway in neonatal rat cardiomyocytes, but not in endothelial cells or fibroblasts. Similarly, the direct effects of EPO on endothelial sprouting were modest and VEGF independent. In rats with HF, EPO increased VEGF protein expression predominantly in cardiomyocytes, associated with a 37% increase in capillary density and improved cardiac performance. Administration of VEGF-neutralizing antibodies abrogated the salutary effects of EPO on cardiac microvascularization and function. VEGF neutralization attenuated EPO-induced proliferation of myocardial endothelial cells and reduced myocardial incorporation of endothelial progenitor cells (EPCs) in rats with alkaline phosphatase-labelled bone marrow cells.

VEGF is crucial for EPO-induced improvement of cardiac function in HF. EPO fosters VEGF expression predominantly in cardiomyocytes, which in turn stimulates myocardial endothelial proliferation and incorporation of EPCs.

Original languageEnglish
Pages (from-to)30-39
Number of pages10
JournalCardiovascular Research
Volume87
Issue number1
Publication statusPublished - 1-Jul-2010

    Keywords

  • Heart failure, Neovascularization, Cardiac function, Erythropoietin, Vascular endothelial growth factor, PROGENITOR-CELL, PRESSURE-OVERLOAD, DARBEPOETIN-ALPHA, VEGF EXPRESSION, DOUBLE-BLIND, ANGIOGENESIS, ISCHEMIA, NEOVASCULARIZATION, DYSFUNCTION, ANEMIA

ID: 5102603