Publication

Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A Transcriptomic case study in the Demosponge Halisarca caerulea

Kenny, N. J., de Goeij, J. M., de Bakker, D. M., Whalen, C. G., Berezikov, E. & Riesgo, A., Feb-2018, In : Marine Genomics. 37, p. 135-147 13 p.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard

Documents

  • Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa

    Final publisher's version, 2.2 MB, PDF document

    Request copy

Links

DOI

  • Nathan J. Kenny
  • Jasper M. de Goeij
  • Didier M. de Bakker
  • Casey G. Whalen
  • Eugene Berezikov
  • Ana Riesgo

Regeneration is an essential process for all multicellular organisms, allowing them to recover effectively from internal and external injury. This process has been studied extensively in a medical context in vertebrates, with pathways often investigated mechanistically, both to derive increased understanding and as potential drug targets for therapy. Several species from other parts of the metazoan tree of life, including Hydra, planarians and echinoderms, noted for their regenerative capabilities, have previously been targeted for study. Less well-documented for their regenerative abilities are sponges. This is surprising, as they are both one of the earliest-branching extant metazoan phyla on Earth, and are rapidly able to respond to injury. Their sessile lifestyle, lack of an external protective layer, inability to respond to predation and filter-feeding strategy all mean that regeneration is often required. In particular the demosponge genus Halisarca has been noted for its fast cell turnover and ability to quickly adjust its cell kinetic properties to repair damage through regeneration. However, while the rate and structure of regeneration in sponges has begun to be investigated, the molecular mechanisms behind this ability are yet to be catalogued.Here we describe the assembly of a reference transcriptome for Halisarca caerulea, along with additional transcriptomes noting response to injury before, shortly following (2. h post-), and 12. h after trauma. RNAseq reads were assembled using Trinity, annotated, and samples compared, to allow initial insight into the transcriptomic basis of sponge regenerative processes. These resources are deep, with our reference assembly containing >. 92.6% of the BUSCO Metazoa set of genes, and well-assembled (N50s of 836, 957, 1688 and 2032 for untreated, 2. h, 12. h and reference transcriptomes respectively), and therefore represent excellent qualitative resources as a bedrock for future study. The generation of transcriptomic resources from sponges before and following deliberate damage has allowed us to study particular pathways within this species responsible for repairing damage. We note particularly the involvement of the Wnt cascades in this process in this species, and detail the contents of this cascade, along with cell cycle, extracellular matrix and apoptosis-linked genes in this work.This resource represents an initial starting point for the continued development of this knowledge, given H. caerulea's ability to regenerate and position as an outgroup for comparing the process of regeneration across metazoan lineages. With this resource in place, we can begin to infer the regenerative capacity of the common ancestor of all extant animal life, and unravel the elements of regeneration in an often-overlooked clade.

Original languageEnglish
Pages (from-to)135-147
Number of pages13
JournalMarine Genomics
Volume37
Publication statusPublished - Feb-2018

    Keywords

  • Halisarca caerulea, Porifera, ancestral cassette, Regeneration, Transcriptome, EVOLUTION, PROTEINS, DUJARDINI DEMOSPONGIAE, SPONGES PORIFERA, CELL-KINETICS, INSIGHTS, ANNOTATION, COMPLEXITY, STRATEGIES, COLLAGENS

ID: 51808572