Topic modelling for routine discovery from egocentric photo-streams

Talavera Martínez, E., Petkov, N. & Radeva, P., Aug-2020, In : Pattern recognition. 104, 14 p., 107330.

Research output: Contribution to journalArticleAcademicpeer-review

Developing tools to understand and visualize lifestyle is of high interest when addressing the improvement of habits and well-being of people. Routine, defined as the usual things that a person does daily, helps describe the individuals' lifestyle. With this paper, we are the first ones to address the development of novel tools for automatic discovery of routine days of an individual from his/her egocentric images. In the proposed model, sequences of images are firstly characterized by semantic labels detected by pre-trained CNNs. Then, these features are organized in temporal-semantic documents to later be embedded into a topic models space. Finally, Dynamic-Time-Warping and Spectral-Clustering methods are used for final day routine/non-routine discrimination. Moreover, we introduce a new EgoRoutine-dataset, a collection of 104 egocentric days with more than 100.000 images recorded by 7 users. Results show that routine can be discovered and behavioural patterns can be observed. (C) 2020 The Author(s). Published by Elsevier Ltd.

Original languageEnglish
Article number 107330
Number of pages14
JournalPattern recognition
Publication statusPublished - Aug-2020


  • routine, egocentric vision, lifestyle, behaviour analysis, topic modelling

Download statistics

No data available

ID: 121201486