Therapy-Induced Changes in CXCR4 Expression in Tumor Xenografts Can Be Monitored Noninvasively with N-[C-11]Methyl-AMD3465 PET

Hartimath, S. V., Draghiciu, O., Daemen, T., Nijman, H. W., van Waarde, A., Dierckx, R. A. J. O. & de Vries, E. F. J., 4-Dec-2019, In : Molecular Imaging and Biology. 8 p.

Research output: Contribution to journalArticleAcademicpeer-review

Purpose Chemokine CXCL12 and its receptor CXCR4 are constitutively overexpressed in human cancers. The CXCL12-CXCR4 signaling axis plays an important role in tumor progression and metastasis, but also in treatment-induced recruitment of CXCR4-expressing cytotoxic immune cells. Here, we aimed to demonstrate the feasibility of N-[C-11]methyl-AMD3465 positron emission tomography (PET) to monitor changes in CXCR4 density in tumors after single-fraction local radiotherapy or in combination with immunization. Procedure TC-1 cells expressing human papillomavirus antigens E6 and E7 were inoculated into the C57BL/6 mice subcutaneously. Two weeks after tumor cell inoculation, mice were irradiated with a single-fraction 14-Gy dose of X-ray. One group of irradiated mice was immunized with an alpha-viral vector vaccine, SFVeE6,7, and another group received daily injections of the CXCR4 antagonist AMD3100 (3 mg/kg -intraperitoneal (i.p.)). Seven days after irradiation, all animals underwent N-[C-11]methyl-AMD3465 PET. Results PET imaging showed N-[C-11]methyl-AMD3465 uptake in the tumor of single-fraction irradiated mice was nearly 2.5-fold higher than in sham-irradiated tumors (1.07 +/- 0.31 %ID/g vs. 0.42 +/- 0.05 % ID/g, p <0.01). The tumor uptake was further increased by 4-fold (1.73 +/- 0.17 % ID/g vs 0.42 +/- 0.05 % ID/g, p <0.01) in mice treated with single-fraction radiotherapy in combination with SFVeE6,7 immunization. Administration of AMD3100 caused a 4.5-fold reduction in the tracer uptake in the tumor of irradiated animals (0.24 +/- 0.1 % ID/g, p <0.001), suggesting that tracer uptake is indeed due to CXCR4-mediated chemotaxis. Conclusion This study demonstrates the feasibility of N-[C-11]methyl-AMD3465 PET imaging to monitor treatment-induced changes in the density of CXCR4 receptors in tumors and justifies further evaluation of CXCR4 as a potential imaging biomarker for evaluation of anti-tumor therapies.

Original languageEnglish
Number of pages8
JournalMolecular Imaging and Biology
Early online date4-Dec-2019
Publication statusPublished - 4-Dec-2019


  • CXCR4 expression, Treatment monitoring, Cervical cancer, Immunization, Radiotherapy, PET, Immune cell infiltration, CHEMOKINE RECEPTOR, UP-REGULATION, CANCER, CELLS, IMMUNOTHERAPY, CHEMOTHERAPY, INHIBITION, RESISTANCE, FACTOR-1-ALPHA, IMMUNIZATION

Download statistics

No data available

ID: 108276524