Publication

The 2020 skyrmionics roadmap

Back, C., Cros, A., Ebert, H., Everschor-Sitte, K., Fert, A., Garst, M., Ma, T., Mankovsky, S., Monchesky, T. L., Mostovoy, M., Nagaosa, N., Parkin, S. S. P., Pfleiderer, C., Reyren, N., Rosch, A., Taguchi, Y., Tokura, Y., von Bergmann, K. & Zang, J., 2-Sep-2020, In : Journal of Physics D-Applied Physics. 53, 36, 37 p., 363001.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard

Documents

DOI

  • C. Back
  • A. Cros
  • H. Ebert
  • K. Everschor-Sitte
  • A. Fert
  • M. Garst
  • Tianping Ma
  • S. Mankovsky
  • T. L. Monchesky
  • M. Mostovoy
  • N. Nagaosa
  • S. S. P. Parkin
  • C. Pfleiderer
  • N. Reyren
  • A. Rosch
  • Y. Taguchi
  • Y. Tokura
  • K. von Bergmann
  • Jiadong Zang

The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as skyrmions. First identified in non-centrosymmetric bulk materials, the rapidly growing zoology of materials systems hosting skyrmions and related topological spin solitons includes bulk compounds, surfaces, thin films, heterostructures, nano-wires and nano-dots. This underscores an exceptional potential for major breakthroughs ranging from fundamental questions to applications as driven by an interdisciplinary exchange of ideas between areas in magnetism which traditionally have been pursued rather independently. The skyrmionics Roadmap provides a review of the present state of the art and the wide range of research directions and strategies currently under way. These are, for instance, motivated by the identification of the fundamental structural properties of skyrmions and related textures, processes of nucleation and annihilation in the presence of non-trivial topological winding, an exceptionally efficient coupling to spin currents generating spin transfer torques at tiny current densities, as well as the capability to purpose-design broad-band spin dynamic and logic devices.

Original languageEnglish
Article number363001
Number of pages37
JournalJournal of Physics D-Applied Physics
Volume53
Issue number36
Publication statusPublished - 2-Sep-2020

    Keywords

  • skyrmion, magnetism, spintronics, TEMPERATURE MAGNETIC SKYRMIONS, ROOM-TEMPERATURE, ELECTRICAL DETECTION, DYNAMICS, LATTICE, MOTION, DRIVEN, MAGNETORESISTANCE, ELECTRODYNAMICS, GENERATION

Download statistics

No data available

ID: 132898549