Publication

Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes

Garcia-Lopez, A., Tessaro, F., Jonker, H. R. A., Wacker, A., Richter, C., Comte, A., Berntenis, N., Schmucki, R., Hatje, K., Petermann, O., Chiriano, G., Perozzo, R., Sciarra, D., Konieczny, P., Faustino, I., Fournet, G., Orozco, M., Artero, R., Metzger, F., Ebeling, M., Goekjian, P., Joseph, B., Schwalbe, H. & Scapozza, L., 23-May-2018, In : Nature Communications. 9, 12 p., 2032.

Research output: Contribution to journalArticleAcademicpeer-review

  • Amparo Garcia-Lopez
  • Francesca Tessaro
  • Hendrik R. A. Jonker
  • Anna Wacker
  • Christian Richter
  • Arnaud Comte
  • Nikolaos Berntenis
  • Roland Schmucki
  • Klas Hatje
  • Olivier Petermann
  • Gianpaolo Chiriano
  • Remo Perozzo
  • Daniel Sciarra
  • Piotr Konieczny
  • Ignacio Faustino
  • Guy Fournet
  • Modesto Orozco
  • Ruben Artero
  • Friedrich Metzger
  • Martin Ebeling
  • Peter Goekjian
  • Benoit Joseph
  • Harald Schwalbe
  • Leonardo Scapozza

Modification of SMN2 exon 7 (E7) splicing is a validated therapeutic strategy against spinal muscular atrophy (SMA). However, a target-based approach to identify small-molecule E7 splicing modifiers has not been attempted, which could reveal novel therapies with improved mechanistic insight. Here, we chose as a target the stem-loop RNA structure TSL2, which overlaps with the 5' splicing site of E7. A small-molecule TSL2-binding compound, homocarbonyltopsentin (PK4C9), was identified that increases E7 splicing to therapeutic levels and rescues downstream molecular alterations in SMA cells. High-resolution NMR combined with molecular modelling revealed that PK4C9 binds to pentaloop conformations of TSL2 and promotes a shift to triloop conformations that display enhanced E7 splicing. Collectively, our study validates TSL2 as a target for small-molecule drug discovery in SMA, identifies a novel mechanism of action for an E7 splicing modifier, and sets a precedent for other splicing-mediated diseases where RNA structure could be similarly targeted.

Original languageEnglish
Article number2032
Number of pages12
JournalNature Communications
Volume9
Publication statusPublished - 23-May-2018

    Keywords

  • BIOACTIVE SMALL MOLECULES, HUMAN-DISEASE GENES, MESSENGER-RNA, NUCLEOTIDE STRUCTURE, COMPUTATIONAL TOOLS, COMPOUND LIBRARIES, MYOTONIC-DYSTROPHY, SPLICING MODIFIERS, MUTATION PATTERN, HIV-1 TAR

View graph of relations

Download statistics

No data available

ID: 61638824