Publication

Structure and nucleotide-induced conformational dynamics of the Chlorobium tepidum Roco protein

Deyaert, E., Leemans, M., Singh, R. K., Gallardo, R., Steyaert, J., Kortholt, A., Lauer, J. & Versées, W., 7-Jan-2019, In : Biochemical Journal. 476, 1, p. 51-66 16 p.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard

Documents

  • Structure and nucleotide-induced conformational dynamics of the Chlorobium tepidum Roco protein

    Final author's version, 8 MB, PDF-document

    Embargo ends: 11/12/2019

    Request copy

  • Structure and nucleotide-induced conformational dynamics of the Chlorobium tepidum Roco protein

    Final publisher's version, 11 MB, PDF-document

    Request copy

DOI

  • Egon Deyaert
  • Margaux Leemans
  • Ranjan Kumar Singh
  • Rodrigo Gallardo
  • Jan Steyaert
  • Arjan Kortholt
  • Janelle Lauer
  • Wim Versées

The LRR-Roc-COR domains are central to the action of nearly all Roco proteins, including the Parkinson's disease-associated protein LRRK2. We previously demonstrated that the Roco protein from Chlorobium tepidum (CtRoco) undergoes a dimer-monomer cycle during the GTPase reaction, with the protein being mainly dimeric in the nucleotide-free and GDP-bound states and monomeric in the GTP-bound state. Here, we report a crystal structure of CtRoco in the nucleotide-free state showing for the first time the arrangement of the LRR-Roc-COR. This structure reveals a compact dimeric arrangement and shows an unanticipated intimate interaction between the Roc GTPase domains in the dimer interface, involving residues from the P-loop, the switch II loop, the G4 region and a loop which we named the "Roc dimerization loop". Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) is subsequently used to highlight structural alterations induced by individual steps along the GTPase cycle. The structure and HDX-MS data propose a pathway linking nucleotide binding to monomerization and relaying the conformational changes via the Roc switch II to the LRR and COR domains. Together, this work provides important new insights in the regulation of the Roco proteins.

Original languageEnglish
Pages (from-to)51-66
Number of pages16
JournalBiochemical Journal
Volume476
Issue number1
Publication statusPublished - 7-Jan-2019

    Keywords

  • structure, conformational dynamics, Roco proteins, Chlorobium tepidum, LRKK2, DISEASE-ASSOCIATED MUTATIONS, GTP-BINDING, LRRK2, DOMAIN, GENE, EVOLUTIONARY, REVEALS, GAPS, GEFS, RAS

View graph of relations

ID: 72126280