Publication

Stability conditions for infinite networks of nonlinear systems and their application for stabilization

Dashkovskiy, S. & Pavlichkov, S., Feb-2020, In : Automatica. 112, 12 p., 108643.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard

Documents

  • Stability conditions for infinite networks of nonlinear systems and their application for stabilization

    Final publisher's version, 644 KB, PDF document

    Request copy

DOI

  • Sergey Dashkovskiy
  • Svyatoslav Pavlichkov

We introduce a new concept of ℓ-input-to-state stability for infinite networks composed of a countable set of interconnected nonlinear subsystems of ordinary differential equations. We suppose that the entire state vector is an element of ℓ and each subsystem is input-to-state stable whereas the dimension of its entire disturbance input including possible interconnections with other subsystems is finite. Our first main result provides conditions for ℓ-input-to-state stability of such infinite-dimensional networks. In our second main result, we solve the problem of decentralized ℓ-ISS stabilization for such networks composed of interconnected lower-triangular form subsystems with uncontrollable linearization. To apply our first main result and obtain the second one, we construct a feedback for each individual agent, which satisfies our new stability conditions. This yields the stabilization of the entire network. Our design is also new for finite networks and this can be considered as an important special case.

Original languageEnglish
Article number108643
Number of pages12
JournalAutomatica
Volume112
Publication statusPublished - Feb-2020

    Keywords

  • Nonlinear systems, Input-to-state stability, Small gain theorems, Infinite networks, Decentralized control, SMALL-GAIN THEOREM, TO-STATE STABILITY, DISTRIBUTED CONTROL, STRING STABILITY, CONSTRUCTION, IISS

ID: 128588313