Regulation of bacteriocin production in Lactobacillus plantarum depends on a conserved promoter arrangement with consensus binding sequence

Risoen, PA., Johnsborg, O., Diep, DB., Hamoen, L., Venema, G. & Nes, IF., Mar-2001, In : MOLECULAR GENETICS AND GENOMICS. 265, 1, p. 198-206 9 p.

Research output: Contribution to journalArticleAcademicpeer-review

  • PA Risoen
  • O Johnsborg
  • DB Diep
  • L Hamoen
  • G Venema
  • IF Nes

Bacteriocin production in Lactobacillus plantarum? C11 is regulated by a three-component signal transduction system comprising a peptide pheromone (PlnA), a histidine protein kinase (PlnB), and two homologous response regulators (RRs; PlnC and PlnD). Both RRs are DNA-binding proteins that bind to promoter-proximal elements in the pin regulon. The binding site for the two regulators consists of two 9-bp direct repeats, that conform to the consensus sequence 5 ' TACGTTAAT-3 '. and the repeats are separated by an intervening 12-bp AT-rich spacer region. In the present work, the plnA promoter was used as a model to evaluate the significance of the binding sequence and conserved promoter arrangement. Point substitutions in the consensus sequence, particularly those in invariant positions, either abolished or significantly reduced binding of PlnC and PlnD. Both regulators bind as homodimers to DNA fragments containing a complete set of regulatory elements, while removal of either repeat, or alterations in the length of the spacer region, significantly weakened binding of both protein dimers. DNase I footprinting demonstrated that PlnC and PlnD both bind to, and protect, the direct repeats. By fusing the plnA promoter region to the beta -glucuronidase (GUS) gene, it was shown that promoter activity is dependent on an intact set of accurately organized repeats. The in vitro and in vivo results presented here confirm the involvement of the repeats as regulatory elements in the regulation of bacteriocin production.

Original languageEnglish
Pages (from-to)198-206
Number of pages9
Issue number1
Publication statusPublished - Mar-2001


  • DNA binding, response regulator, promoter organization, bacteriocin production, Lactobacillus plantarum, GRAM-POSITIVE BACTERIA, STREPTOCOCCUS-PNEUMONIAE, C-11, TRANSFORMATION, IDENTIFICATION, COMPETENCE, PHEROMONE, SYSTEMS, LOCUS, SITES

ID: 3950208