Publication
Reassessment of the C-13/C-12 and C-14/C-12 isotopic fractionation ratio and its impact on high-precision radiocarbon dating
Fahrni, S. M., Southon, J. R., Santos, G. M., Palstra, S. W. L., Meijer, H. A. J. & Xu, X., 15-Sep-2017, In : Geochimica et Cosmochimica Acta. 213, p. 330-345 16 p.Research output: Contribution to journal › Article › Academic › peer-review
APA
Author
Harvard
Standard
Reassessment of the C-13/C-12 and C-14/C-12 isotopic fractionation ratio and its impact on high-precision radiocarbon dating. / Fahrni, Simon M.; Southon, John R.; Santos, Guaciara M.; Palstra, Sanne W. L.; Meijer, Harro A. J.; Xu, Xiaomei.
In: Geochimica et Cosmochimica Acta, Vol. 213, 15.09.2017, p. 330-345.Research output: Contribution to journal › Article › Academic › peer-review
Vancouver
BibTeX
}
RIS
TY - JOUR
T1 - Reassessment of the C-13/C-12 and C-14/C-12 isotopic fractionation ratio and its impact on high-precision radiocarbon dating
AU - Fahrni, Simon M.
AU - Southon, John R.
AU - Santos, Guaciara M.
AU - Palstra, Sanne W. L.
AU - Meijer, Harro A. J.
AU - Xu, Xiaomei
PY - 2017/9/15
Y1 - 2017/9/15
N2 - The vast majority of radiocarbon measurement results (C-14/C-12 isotopic ratios or sample activities) are corrected for isotopic fractionation processes (measured as C-13/C-12 isotopic ratios) that occur in nature, in sample preparation and measurement. In 1954 Harmon Craig suggested a value of 2.0 for the fractionation ratio b that is used to correct C-14/C-12 ratios for shifts in the C-13/C-12 ratios and this value has been applied by the radiocarbon community ever since. While theoretical considerations suggest moderate deviations of b from 2.0, some measurements have suggested larger differences (e.g. b = 2.3, measured by Saliege and Fontes in 1984). With the high precision attained in radiocarbon measurements today (+/- 2%), even a relatively small deviation of b from 2.0 can impact the accuracy of radiocarbon data, and it is, therefore, of interest to re-evaluate the fractionation corrections. In the present study, the fractionation ratio b was determined by independent experiments on the chemical reduction of carbon dioxide (CO2) to elemental carbon (graphitization reaction) and on the photosynthetic uptake of CO2 by C-3 and C-4 plants. The results yielded b = 1.882 +/- 0.019 for the reduction of CO2 to solid graphite and b = 1.953 +/- 0.025 for the weighted mean of measurements involving C-3 and C-4 photosynthesis pathways. In addition, the analysis of over 9600 full-sized OX-I and OX-II normalizing standards measured between 2002 and 2012 confirms b values lower than 2.0. The obtained values are in good agreement with quantum mechanical estimates of the equilibrium fractionation and classic kinetic fractionation as well as with results from other light three-isotope systems (oxygen, magnesium, silicon and sulfur). While the value of the fractionation ratio varies with the relative importance of kinetic and equilibrium fractionation, the values obtained in the present study cluster around b = 1.9. Our findings suggest that a significant fraction of all samples ("unknowns") would be shifted by 2% (16 radiocarbon years) or more due to this effect: for example, for b = 1.882, between 16.8% and 25.9% of almost 60,000 radiocarbon values measured at the Keck Carbon Cycle AMS facility between 2002 and 2012 would be affected. The implications for radiocarbon dating and its accuracy are discussed. (C) 2017 Elsevier Ltd. All rights reserved.
AB - The vast majority of radiocarbon measurement results (C-14/C-12 isotopic ratios or sample activities) are corrected for isotopic fractionation processes (measured as C-13/C-12 isotopic ratios) that occur in nature, in sample preparation and measurement. In 1954 Harmon Craig suggested a value of 2.0 for the fractionation ratio b that is used to correct C-14/C-12 ratios for shifts in the C-13/C-12 ratios and this value has been applied by the radiocarbon community ever since. While theoretical considerations suggest moderate deviations of b from 2.0, some measurements have suggested larger differences (e.g. b = 2.3, measured by Saliege and Fontes in 1984). With the high precision attained in radiocarbon measurements today (+/- 2%), even a relatively small deviation of b from 2.0 can impact the accuracy of radiocarbon data, and it is, therefore, of interest to re-evaluate the fractionation corrections. In the present study, the fractionation ratio b was determined by independent experiments on the chemical reduction of carbon dioxide (CO2) to elemental carbon (graphitization reaction) and on the photosynthetic uptake of CO2 by C-3 and C-4 plants. The results yielded b = 1.882 +/- 0.019 for the reduction of CO2 to solid graphite and b = 1.953 +/- 0.025 for the weighted mean of measurements involving C-3 and C-4 photosynthesis pathways. In addition, the analysis of over 9600 full-sized OX-I and OX-II normalizing standards measured between 2002 and 2012 confirms b values lower than 2.0. The obtained values are in good agreement with quantum mechanical estimates of the equilibrium fractionation and classic kinetic fractionation as well as with results from other light three-isotope systems (oxygen, magnesium, silicon and sulfur). While the value of the fractionation ratio varies with the relative importance of kinetic and equilibrium fractionation, the values obtained in the present study cluster around b = 1.9. Our findings suggest that a significant fraction of all samples ("unknowns") would be shifted by 2% (16 radiocarbon years) or more due to this effect: for example, for b = 1.882, between 16.8% and 25.9% of almost 60,000 radiocarbon values measured at the Keck Carbon Cycle AMS facility between 2002 and 2012 would be affected. The implications for radiocarbon dating and its accuracy are discussed. (C) 2017 Elsevier Ltd. All rights reserved.
KW - Photosynthesis
KW - Radiocarbon
KW - C-14
KW - AMS
KW - High-precision measurement
KW - Three-isotope system
KW - Isotopic fractionation
KW - Fractionation correction
KW - ACCELERATOR MASS-SPECTROMETRY
KW - SAMPLE PREPARATION
KW - MALONIC-ACID
KW - C-14 DATA
KW - ICP-MS
KW - CARBON
KW - OXYGEN
KW - GRAPHITE
KW - GAS
U2 - 10.1016/j.gca.2017.05.038
DO - 10.1016/j.gca.2017.05.038
M3 - Article
VL - 213
SP - 330
EP - 345
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
SN - 0016-7037
ER -
ID: 47033760