Publication

Rapid and Robust Polyprotein Production Facilitates Single-Molecule Mechanical Characterization of β-Barrel Assembly Machinery Polypeptide Transport Associated Domains

Hoffmann, T., Tych, K., Crosskey, T., Schiffrin, B., Brockwell, D. J. & Dougan, L., Sep-2015, In : Acs Nano. 9, 9, p. 8811-8822 12 p., acsnano.5b01962.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard

Documents

  • Rapid and Robust PolyproteinProduction Facilitates Single-MoleculeMechanical Characterization ofβ‑BarrelAssembly Machinery PolypeptideTransport Associated Domains

    Final publisher's version, 4.57 MB, PDF document

    Request copy

DOI

  • Toni Hoffmann
  • Kasia Tych
  • Thomas Crosskey
  • Bob Schiffrin
  • David J. Brockwell
  • Lorna Dougan
Single-molecule force spectroscopy by atomic force microscopy exploits the use of multimeric protein constructs, namely, polyproteins, to decrease the impact of nonspecific interactions, to improve data accumulation, and to allow the accommodation of benchmarking reference domains within the construct. However, methods to generate such constructs are either time- and labor-intensive or lack control over the length or the domain sequence of the obtained construct. Here, we describe an approach that addresses both of these shortcomings that uses Gibson assembly (GA) to generate a defined recombinant polyprotein rapidly using linker sequences. To demonstrate the feasibility of this approach, we used GA to make a polyprotein composed of alternating domains of I27 and TmCsp, (I27-TmCsp)3-I27)(GA), and showed the mechanical fingerprint, mechanical strength, and pulling speed dependence are the same as an analogous polyprotein constructed using the classical approach. After this benchmarking, we exploited this approach to facilitiate the mechanical characterization of POTRA domain 2 of BamA from E. coli (EcPOTRA2) by assembling the polyprotein (I27-EcPOTRA2)3-I27(GA). We show that, as predicted from the α + β topology, EcPOTRA2 domains are mechanically robust over a wide range of pulling speeds. Furthermore, we identify a clear correlation between mechanical robustness and brittleness for a range of other α + β proteins that contain the structural feature of proximal terminal β-strands in parallel geometry. We thus demonstrate that the GA approach is a powerful tool, as it circumvents the usual time- and labor-intensive polyprotein production process and allows for rapid production of new constructs for single-molecule studies. As shown for EcPOTRA2, this approach allows the exploration of the mechanical properties of a greater number of proteins and their variants. This improves our understanding of the relationship between structure and mechanical strength, increasing our ability to design proteins with tailored mechanical properties.
Original languageEnglish
Article numberacsnano.5b01962
Pages (from-to)8811-8822
Number of pages12
JournalAcs Nano
Volume9
Issue number9
Publication statusPublished - Sep-2015
Externally publishedYes

ID: 125731164