Publication

Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles

Raghnaill, M. N., Bramini, M., Ye, D., Couraud, P-O., Romero, I. A., Weksler, B., Åberg, C., Salvati, A., Lynch, I. & Dawson, K. A., 7-Mar-2014, In : Analyst. 139, 5, p. 923-930 8 p.

Research output: Contribution to journalArticleAcademicpeer-review

APA

Raghnaill, M. N., Bramini, M., Ye, D., Couraud, P-O., Romero, I. A., Weksler, B., ... Dawson, K. A. (2014). Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles. Analyst, 139(5), 923-930. https://doi.org/10.1039/c3an01621h

Author

Raghnaill, Michelle Nic ; Bramini, Mattia ; Ye, Dong ; Couraud, Pierre-Olivier ; Romero, Ignacio A. ; Weksler, Babette ; Åberg, Christoffer ; Salvati, Anna ; Lynch, Iseult ; Dawson, Kenneth A. / Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles. In: Analyst. 2014 ; Vol. 139, No. 5. pp. 923-930.

Harvard

Raghnaill, MN, Bramini, M, Ye, D, Couraud, P-O, Romero, IA, Weksler, B, Åberg, C, Salvati, A, Lynch, I & Dawson, KA 2014, 'Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles', Analyst, vol. 139, no. 5, pp. 923-930. https://doi.org/10.1039/c3an01621h

Standard

Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles. / Raghnaill, Michelle Nic; Bramini, Mattia; Ye, Dong; Couraud, Pierre-Olivier; Romero, Ignacio A.; Weksler, Babette; Åberg, Christoffer; Salvati, Anna; Lynch, Iseult; Dawson, Kenneth A.

In: Analyst, Vol. 139, No. 5, 07.03.2014, p. 923-930.

Research output: Contribution to journalArticleAcademicpeer-review

Vancouver

Raghnaill MN, Bramini M, Ye D, Couraud P-O, Romero IA, Weksler B et al. Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles. Analyst. 2014 Mar 7;139(5):923-930. https://doi.org/10.1039/c3an01621h


BibTeX

@article{4beddb7c018642a4ba9e77dbd380c6de,
title = "Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles",
abstract = "Nanoparticle properties, such as small size relative to large highly modifiable surface area, offer great promise for neuro-therapeutics and nanodiagnostics. A fundamental understanding and control of how nanoparticles interact with the blood-brain barrier (BBB) could enable major developments in nanomedical treatment of previously intractable neurological disorders, and help ensure that nanoparticles not intended to reach the brain do not cause adverse effects. Nanosafety is of utmost importance to this field. However, a distinct lack of knowledge exists regarding nanoparticle accumulation within the BBB and the biological effects this may induce on neighbouring cells of the Central Nervous System (CNS), particularly in the long-term. This study focussed on the exposure of an in vitro BBB model to model carboxylated polystyrene nanoparticles (PS COOH NPs), as these nanoparticles are well characterised for in vitro experimentation and have been reported as non-toxic in many biological settings. TEM imaging showed accumulation but not degradation of 100 nm PS COOH NPs within the lysosomes of the in vitro BBB over time. Cytokine secretion analysis from the in vitro BBB post 24 h 100 nm PS COOH NP exposure showed a low level of pro-inflammatory RANTES protein secretion compared to control. In contrast, 24 h exposure of the in vitro BBB endothelium to 100 nm PS COOH NPs in the presence of underlying astrocytes caused a significant increase in pro-survival signalling. In conclusion, the tantalising possibilities of nanomedicine must be balanced by cautious studies into the possible long-term toxicity caused by accumulation of known `toxic' and `non-toxic' nanoparticles, as general toxicity assays may be disguising significant signalling regulation during longterm accumulation.",
keywords = "MAMMALIAN-CELLS, ORAL DELIVERY, DNA-DAMAGE, DRUGS, SIZE, NANOTOXICOLOGY, PARTICLES, TRANSPORT, VACCINES, SYSTEMS",
author = "Raghnaill, {Michelle Nic} and Mattia Bramini and Dong Ye and Pierre-Olivier Couraud and Romero, {Ignacio A.} and Babette Weksler and Christoffer {\AA}berg and Anna Salvati and Iseult Lynch and Dawson, {Kenneth A.}",
year = "2014",
month = "3",
day = "7",
doi = "10.1039/c3an01621h",
language = "English",
volume = "139",
pages = "923--930",
journal = "Analyst",
issn = "0003-2654",
number = "5",

}

RIS

TY - JOUR

T1 - Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles

AU - Raghnaill, Michelle Nic

AU - Bramini, Mattia

AU - Ye, Dong

AU - Couraud, Pierre-Olivier

AU - Romero, Ignacio A.

AU - Weksler, Babette

AU - Åberg, Christoffer

AU - Salvati, Anna

AU - Lynch, Iseult

AU - Dawson, Kenneth A.

PY - 2014/3/7

Y1 - 2014/3/7

N2 - Nanoparticle properties, such as small size relative to large highly modifiable surface area, offer great promise for neuro-therapeutics and nanodiagnostics. A fundamental understanding and control of how nanoparticles interact with the blood-brain barrier (BBB) could enable major developments in nanomedical treatment of previously intractable neurological disorders, and help ensure that nanoparticles not intended to reach the brain do not cause adverse effects. Nanosafety is of utmost importance to this field. However, a distinct lack of knowledge exists regarding nanoparticle accumulation within the BBB and the biological effects this may induce on neighbouring cells of the Central Nervous System (CNS), particularly in the long-term. This study focussed on the exposure of an in vitro BBB model to model carboxylated polystyrene nanoparticles (PS COOH NPs), as these nanoparticles are well characterised for in vitro experimentation and have been reported as non-toxic in many biological settings. TEM imaging showed accumulation but not degradation of 100 nm PS COOH NPs within the lysosomes of the in vitro BBB over time. Cytokine secretion analysis from the in vitro BBB post 24 h 100 nm PS COOH NP exposure showed a low level of pro-inflammatory RANTES protein secretion compared to control. In contrast, 24 h exposure of the in vitro BBB endothelium to 100 nm PS COOH NPs in the presence of underlying astrocytes caused a significant increase in pro-survival signalling. In conclusion, the tantalising possibilities of nanomedicine must be balanced by cautious studies into the possible long-term toxicity caused by accumulation of known `toxic' and `non-toxic' nanoparticles, as general toxicity assays may be disguising significant signalling regulation during longterm accumulation.

AB - Nanoparticle properties, such as small size relative to large highly modifiable surface area, offer great promise for neuro-therapeutics and nanodiagnostics. A fundamental understanding and control of how nanoparticles interact with the blood-brain barrier (BBB) could enable major developments in nanomedical treatment of previously intractable neurological disorders, and help ensure that nanoparticles not intended to reach the brain do not cause adverse effects. Nanosafety is of utmost importance to this field. However, a distinct lack of knowledge exists regarding nanoparticle accumulation within the BBB and the biological effects this may induce on neighbouring cells of the Central Nervous System (CNS), particularly in the long-term. This study focussed on the exposure of an in vitro BBB model to model carboxylated polystyrene nanoparticles (PS COOH NPs), as these nanoparticles are well characterised for in vitro experimentation and have been reported as non-toxic in many biological settings. TEM imaging showed accumulation but not degradation of 100 nm PS COOH NPs within the lysosomes of the in vitro BBB over time. Cytokine secretion analysis from the in vitro BBB post 24 h 100 nm PS COOH NP exposure showed a low level of pro-inflammatory RANTES protein secretion compared to control. In contrast, 24 h exposure of the in vitro BBB endothelium to 100 nm PS COOH NPs in the presence of underlying astrocytes caused a significant increase in pro-survival signalling. In conclusion, the tantalising possibilities of nanomedicine must be balanced by cautious studies into the possible long-term toxicity caused by accumulation of known `toxic' and `non-toxic' nanoparticles, as general toxicity assays may be disguising significant signalling regulation during longterm accumulation.

KW - MAMMALIAN-CELLS

KW - ORAL DELIVERY

KW - DNA-DAMAGE

KW - DRUGS

KW - SIZE

KW - NANOTOXICOLOGY

KW - PARTICLES

KW - TRANSPORT

KW - VACCINES

KW - SYSTEMS

U2 - 10.1039/c3an01621h

DO - 10.1039/c3an01621h

M3 - Article

VL - 139

SP - 923

EP - 930

JO - Analyst

JF - Analyst

SN - 0003-2654

IS - 5

ER -

ID: 10748030