On the mechanism of ion-induced bending of nanostructures

Ribas Gomes, D., Turkin, A., Vainchtein, D. & De Hosson, J. T. M., 15-Jul-2018, In : Applied Surface Science. 446, SI, p. 151-159 9 p.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard


  • On the mechanism of ion-induced bending of nanostructures

    Final publisher's version, 1.33 MB, PDF document

    Request copy


This contribution concentrates on ion-induced bending phenomena which may serve as a versatile tool to manufacture nanostructured devices. In particular bending was studied in free standing Au cantilevers. The preparation and irradiation of the cantilevers were performed using a TESCAN LYRA dual beam system. Cantilevers with thicknesses ranging between 90 and 200 nm were irradiated with 30 keV Ga ions normal to the sample surface up to a maximum fluence of ∼3 × 1020 Ga/m2. The bending of the cantilevers towards the incident beam is discussed in terms of local volume change due to accumulation of radiation-induced vacancies and substitutional Ga atoms in the Ga implantation layer, as well as due to accumulation of interstitial type clusters in the region beyond the Ga penetration range. A model is proposed to explain the observations, based on a set of rate equations for concentrations of point defects, i.e. vacancies, self-interstitials and implanted Ga atoms. The influence of preexisting defects is also discussed. The work shows that an in-depth understanding the ion-beam bending can play a predictive role in a quantitative control in for the micro- and nanofabrication of small-sized products.
Original languageEnglish
Pages (from-to)151-159
Number of pages9
JournalApplied Surface Science
Issue numberSI
Publication statusPublished - 15-Jul-2018

ID: 64493778