Old yellow enzyme confers resistance of Hansenula polymorpha towards allyl alcohol

Komduur, JA., Leao, AN., Monastyrska, N. V., Veenhuis, M., Kiel, JAKW., Leão, A. N. & Monastyrska, I., Sep-2002, In : Current Genetics. 41, 6, p. 401-406 6 p.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard



  • JA Komduur
  • AN Leao
  • [No Value] Monastyrska
  • M Veenhuis
  • JAKW Kiel
  • Adriana N. Leão
  • Iryna Monastyrska

In the methylotrophic yeast, Hansenula polymorpha, peroxisomes are formed during growth on methanol as sole carbon and energy source and contain the key enzymes for its metabolism, one of the major enzymes being alcohol oxidase (AO). Upon a shift of these cells to glucose-containing medium, peroxisomes become redundant for growth and are rapidly degraded via a highly selective process designated macropexophagy. H. polymorpha pdd mutants are disturbed in macropexophagy and hence retain high levels of peroxisomal AO activity upon induction of this process. To enable efficient isolation of PDD genes via functional complementation, we make use of the fact that AO can convert allyl alcohol into the highly toxic compound acrolein. When allyl alcohol is added to cells under conditions that induce macropexophagy, pdd mutants die, whereas complemented pdd mutants and wild-type cells survive. Besides isolating bona fide PDD genes, we occasionally obtained pdd transformants that retained high levels of AO activity although their allyl alcohol sensitive phenotype was suppressed. These invariably contained extra copies of a gene cluster encoding omologues of Saccharomyces carlsbergensis old yellow enzyme. Our data suggest that the proteins encoded by these genes detoxify acrolein by converting it into less harmful components.

Original languageEnglish
Pages (from-to)401-406
Number of pages6
JournalCurrent Genetics
Issue number6
Publication statusPublished - Sep-2002


  • detoxification, HYE gene cluster, methylotrophic yeast, NADPH dehydrogenase, selective peroxisome degradation, YEAST, REDUCTASE, MECHANISM, SEQUENCE, MUTANTS, CLONING

Download statistics

No data available

ID: 4051638