Publication

Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments

Frederix, P. W. J. M., Patmanidis, I. & Marrink, S. J., 21-May-2018, In : Chemical Society Reviews. 47, 10, p. 3470-3489 20 p.

Research output: Contribution to journalReview articleAcademicpeer-review

In bionanotechnology, the field of creating functional materials consisting of bio-inspired molecules, the function and shape of a nanostructure only appear through the assembly of many small molecules together. The large number of building blocks required to define a nanostructure combined with the many degrees of freedom in packing small molecules has long precluded molecular simulations, but recent advances in computational hardware as well as software have made classical simulations available to this strongly expanding field. Here, we review the state of the art in simulations of self-assembling bio-inspired supramolecular systems. We will first discuss progress in force fields, simulation protocols and enhanced sampling techniques using recent examples. Secondly, we will focus on efforts to enable the comparison of experimentally accessible observables and computational results. Experimental quantities that can be measured by microscopy, spectroscopy and scattering can be linked to simulation output either directly or indirectly, via quantum mechanical or semi-empirical techniques. Overall, we aim to provide an overview of the various computational approaches to understand not only the molecular architecture of nanostructures, but also the mechanism of their formation.

Original languageEnglish
Pages (from-to)3470-3489
Number of pages20
JournalChemical Society Reviews
Volume47
Issue number10
Early online date24-Apr-2018
Publication statusPublished - 21-May-2018

    Keywords

  • PEPTIDE-BASED NANOSTRUCTURES, GENERAL FORCE-FIELD, COARSE-GRAINED SIMULATIONS, SHORT AMPHIPHILIC PEPTIDES, SMALL ORGANIC-MOLECULES, 2D IR SPECTROSCOPY, ACID SIDE-CHAINS, DYNAMICS SIMULATIONS, CIRCULAR-DICHROISM, FREE-ENERGY

Download statistics

No data available

ID: 57982541