Publication

MicroRNA-223 controls the expression of histone deacetylase 2: a novel axis in COPD

Leuenberger, C., Schuoler, C., Bye, H., Mignan, C., Rechsteiner, T., Hillinger, S., Opitz, I., Marsland, B., Faiz, A., Hiemstra, P. S., Timens, W., Camici, G. G., Kohler, M., Huber, L. C. & Brock, M., Jun-2016, In : Journal of Molecular Medicine. 94, 6, p. 725-734 10 p.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard

Documents

  • MicroRNA-223 controls the expression of histone deacetylase 2 a novel

    Final publisher's version, 1.2 MB, PDF document

    Request copy

DOI

  • Caroline Leuenberger
  • Claudio Schuoler
  • Hannah Bye
  • Celia Mignan
  • Thomas Rechsteiner
  • Sven Hillinger
  • Isabelle Opitz
  • Benjamin Marsland
  • Alen Faiz
  • Pieter S. Hiemstra
  • Wim Timens
  • Giovanni G. Camici
  • Malcolm Kohler
  • Lars C. Huber
  • Matthias Brock

Reduced activity of histone deacetylase 2 (HDAC2) has been described in patients with chronic obstructive pulmonary disease (COPD), but the mechanisms resulting in decreased expression of this important epigenetic modifier remain unknown. Here, we employed several in vitro experiments to address the role of microRNAs (miRNAs) on the regulation of HDAC2 in endothelial cells. Manipulation of miRNA levels in human pulmonary artery endothelial cells (HPAEC) was achieved by using electroporation with anti-miRNAs and miRNA mimics. Target prediction software identified miR-223 as a potential repressor of HDAC2. In subsequent stimulation experiments using inflammatory cytokines known to be increased in patients with COPD, miR-223 was found to be significantly induced. Functional analysis demonstrated that overexpression of miR-223 decreased HDAC2 expression and activity in HPAEC. Conversely, HDAC2 expression and activity was preserved in anti-miR-223-treated cells. Direct miRNA-target interaction was confirmed by reporter gene assay. In a next step, reduced expression of HDAC2 was found to increase the levels of the chemokine fractalkine (CX(3)CL1). In vivo studies confirmed elevated expression levels of miR-223 in mice exposed to cigarette smoke and in emphysematous lung tissue from LPS-treated mice. Moreover, a significant inverse correlation of miR-223 and HDAC2 expression was found in two independent cohorts of COPD patients. These data emphasize that miR-223, the most prevalent miRNA in COPD, controls expression and activity of HDAC2 in pulmonary cells, which, in turn, might alter the expression profile of chemokines. This pathway provides a novel pathogenic link between dysregulated miRNA expression and epigenetic activity in COPD.

Histone deacetylase 2 is directly targeted by miR-223.

Levels of miR-223 are induced by interleukin-1 beta and tumor necrosis factor-alpha.

miR-223 controls the expression of fractalkine by targeting histone deacetylase 2.

miR-223 levels are increased in COPD mouse models.

miR-223 levels inversely correlate with HDAC2 expression in COPD patients.

Original languageEnglish
Pages (from-to)725-734
Number of pages10
JournalJournal of Molecular Medicine
Volume94
Issue number6
Early online date11-Feb-2016
Publication statusPublished - Jun-2016

    Keywords

  • Chronic obstructive pulmonary disease, microRNA, Inflammation, Histone deacetylase 2, OBSTRUCTIVE PULMONARY-DISEASE, INFLAMMATORY LUNG-DISEASES, AIRWAY GENE-EXPRESSION, INTERLEUKIN-6, RECEPTOR

ID: 28793629