Publication

Mechanisms of the transition to adulthood: an application of Hidden Markov Models

Han, Y., Liefbroer, A. C. & Elzinga, C., 2016, Proceedings of International Conference on Sequence Analysis and Related Methods (LaCOSA II). Swiss National Centre of Competence in Research and Swiss National Science Foundation, p. 155-178 24 p.

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

  • Y. Han
  • A.C. Liefbroer
  • C. Elzinga
An increasing number of studies focuses on understanding the processesunderlying the transition to adulthood. However, the transition to adulthood isa complex process of a series of events that are often interlinked. Even thoughlife courses are greatly varying sequences of roughly the same life course events,the complexity is caused by the fact that these sequences consist of correlatedevents and spells and these correlations depend on gender, social class, cohort and cohort-related macro events. Our previous work demonstrated that the application of stochastic models like the Latent-Class model helps to describe the variation in life courses and its correlation with gender and social class. But the Latent-Class model cannot account for correlated events within life courses nor can it account for switches between latent types during the life course. We argue that (Hidden) Markov models, as a simple generalization of the Latent-Class model, has the ability to account for correlations between events and spells and also allows for switches between latent types or model life courses. Therefore, this study will use (Hidden) Markov models to produce a typology of trajectories of the transition to adulthood. Furthermore, we will test hypotheses on social class- and gender differences in observed life courses and latent types or model-life courses, using data from the Gender and Generation Programme (GGP), which provides full monthly life course sequence data between age 15 to 40.
Original languageEnglish
Title of host publicationProceedings of International Conference on Sequence Analysis and Related Methods (LaCOSA II)
PublisherSwiss National Centre of Competence in Research and Swiss National Science Foundation
Pages155-178
Number of pages24
Publication statusPublished - 2016

View graph of relations

ID: 65540402