Learning vector quantization and relevances in complex coefficient space

Straat, M., Kaden, M., Gay, M., Villmann, T., Lampe, A., Seiffert, U., Biehl, M. & Melchert, F., 9-Mar-2019, In : Neural Computing and Applications. 15 p.

Research output: Contribution to journalArticleAcademicpeer-review

In this contribution, we consider the classification of time series and similar functional data which can be represented in complex Fourier and wavelet coefficient space. We apply versions of learning vector quantization (LVQ) which are suitable for complex-valued data, based on the so-called Wirtinger calculus. It allows for the formulation of gradient-based update rules in the framework of cost-function-based generalized matrix relevance LVQ (GMLVQ). Alternatively, we consider the concatenation of real and imaginary parts of Fourier coefficients in a real-valued feature vector and the classification of time-domain representations by means of conventional GMLVQ. In addition, we consider the application of the method in combination with wavelet-space features to heartbeat classification.
Original languageEnglish
Number of pages15
JournalNeural Computing and Applications
Early online date9-Mar-2019
Publication statusPublished - 9-Mar-2019

Download statistics

No data available

ID: 77709390