Publication

Inhibitory selectivity among class I HDACs has a major impact on inflammatory gene expression in macrophages

Cao, F., Zwinderman, M., van Merkerk, R., Ettema, P., Quax, W. & Dekker, F. J., 1-Sep-2019, In : European Journal of Medicinal Chemistry. 177, p. 457-466 10 p.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard

Documents

DOI

Histone deacetylases (HDACs) play an important role in cancer, degenerative diseases and inflammation. The currently applied HDAC inhibitors in the clinic lack selectivity among HDAC isoforms, which limits their application for novel indications such as inflammatory diseases. Recent, literature indicates that HDAC 3 plays an important role among class I HDACs in gene expression in inflammation. In this perspective, the development and understanding of inhibitory selectivity among HDACs 1, 2 and 3 and their respective influence on gene expression need to be characterized to facilitate drug discovery. Towards this aim, we synthesized nine structural analogues of the class I HDAC inhibitor Entinostat and investigated their selectivity profile among HDACs 1, 2 and 3. We found that we can explain the observed structure activity relationships by small structural and conformational differences between HDAC 1 and HDAC 3 in the 'lid' interacting region. Cell-based studies indicated, however, that application of inhibitors with improved HDAC 3 selectivity did not provide an anti-inflammatory response in contrast to expectations from biochemical evidence in literature. Altogether, in this study, we identified structure activity relationships among class I HDACs and we connected isoform selectivity among class I HDACs with pro- and anti-inflammatory gene transcription in macrophages.

Original languageEnglish
Pages (from-to)457-466
Number of pages10
JournalEuropean Journal of Medicinal Chemistry
Volume177
Early online date18-May-2019
Publication statusPublished - 1-Sep-2019

    Keywords

  • HISTONE DEACETYLASE HDAC

Download statistics

No data available

ID: 83844037