Improving nonhomogeneous dynamic Bayesian networks with sequentially coupled parameters

Kamalabad, M. S. & Grzegorczyk, M., Aug-2018, In : Statistica Neerlandica. 72, 3, p. 281-305 25 p.

Research output: Contribution to journalArticleAcademicpeer-review

In systems biology, nonhomogeneous dynamic Bayesian networks (NH-DBNs) have become a popular modeling tool for reconstructing cellular regulatory networks from postgenomic data. In this paper, we focus our attention on NH-DBNs that are based on Bayesian piecewise linear regression models. The new NH-DBN model, proposed here, is a generalization of an earlier proposed model with sequentially coupled network interaction parameters. Unlike the original model, our novel model possesses segment-specific coupling parameters, so that the coupling strengths between parameters can vary over time. Thereby, to avoid model overflexibility and to allow for some information exchange among time segments, we globally couple the segment-specific coupling (strength) parameters by a hyperprior. Our empirical results on synthetic and on real biological network data show that the new model yields better network reconstruction accuracies than the original model.

Original languageEnglish
Pages (from-to)281-305
Number of pages25
JournalStatistica Neerlandica
Issue number3
Publication statusPublished - Aug-2018
Event32nd International Workshop on Statistical Modelling (IWSM) - Groningen, Netherlands
Duration: 1-Jul-2017 → …


32nd International Workshop on Statistical Modelling (IWSM)

01/07/2017 → …

Groningen, Netherlands

Event: Conference


  • Bayesian modeling, dynamic Bayesian network, network reconstruction, parameter coupling, sequential coupling, systems biology

Download statistics

No data available

ID: 64491778