Impact of buffer gas quenching on the 1S0 → 1P1 ground-state atomic transition in nobelium

Chhetri, P., Ackermann, D., Backe, H., Block, M., Cheal, B., Düllmann, C. E., Even, J., Ferrer, R., Giacoppo, F., Götz, S., Heßberger, F. P., Kaleja, O., Khuyagbaatar, J., Kunz, P., Laatiaoui, M., Lautenschläger, F., Lauth, W., Ramirez, E. M., Mistry, A. K., Raeder, S., Wraith, C., Walther, T. & Yakushev, A. 1-Jul-2017 In : European Physical Journal D. 71, 7, 195

Research output: Scientific - peer-reviewArticle

Copy link to clipboard


  • Impact of buffer gas quenching on the

    Final publisher's version, 620 KB, PDF-document


  • Premaditya Chhetri
  • Dieter Ackermann
  • Hartmut Backe
  • Michael Block
  • Bradley Cheal
  • Christoph Emanuel Düllmann
  • Julia Even
  • Rafael Ferrer
  • Francesca Giacoppo
  • Stefan Götz
  • Fritz Peter Heßberger
  • Oliver Kaleja
  • Jadambaa Khuyagbaatar
  • Peter Kunz
  • Mustapha Laatiaoui
  • Felix Lautenschläger
  • Werner Lauth
  • Enrique Minaya Ramirez
  • Andrew Kishor Mistry
  • Sebastian Raeder
  • Calvin Wraith
  • Thomas Walther
  • Alexander Yakushev
Using the sensitive Radiation Detected Resonance Ionization Spectroscopy (RADRIS) technique an optical transition in neutral nobelium (No, Z = 102) was identified. A remnant signal when delaying the ionizing laser indicated the influence of a strong buffer gas induced de-excitation of the optically populated level. A subsequent investigation of the chemical homologue, ytterbium (Yb, Z = 70), enabled a detailed study of the atomic levels involved in this process, leading to the development of a rate equation model. This paves the way for characterizing resonance ionization spectroscopy (RIS) schemes used in the study of nobelium and beyond, where atomic properties are currently unknown.
Original languageEnglish
Article number195
JournalEuropean Physical Journal D
Issue number7
StatePublished - 1-Jul-2017


  • Atomic Physics

View graph of relations

ID: 47562991