Publication

Genome-wide mapping of sister chromatid exchange events in single yeast cells using Strand-seq

Claussin, C., Porubsky, D., Spierings, D. C. J., Halsema, N., Rentas, S., Guryev, V., Lansdorp, P. M. & Chang, M., 12-Dec-2017, In : eLife. 6, 17 p., 30560.

Research output: Contribution to journalArticleAcademicpeer-review

Homologous recombination involving sister chromatids is the most accurate, and thus most frequently used, form of recombination-mediated DNA repair. Despite its importance, sister chromatid recombination is not easily studied because it does not result in a change in DNA sequence, making recombination between sister chromatids difficult to detect. We have previously developed a novel DNA template strand sequencing technique, called Strand-seq, that can be used to map sister chromatid exchange (SCE) events genome-wide in single cells. An increase in the rate of SCE is an indicator of elevated recombination activity and of genome instability, which is a hallmark of cancer. In this study, we have adapted Strand-seq to detect SCE in the yeast Saccharomyces cerevisiae. We provide the first quantifiable evidence that most spontaneous SCE events in wild-type cells are not due to the repair of DNA double-strand breaks.

Original languageEnglish
Article number30560
Number of pages17
JournaleLife
Volume6
Publication statusPublished - 12-Dec-2017

    Keywords

  • REPLICATION PROTEIN-A, CONSERVATIVE DNA-SYNTHESIS, SACCHAROMYCES-CEREVISIAE, BREAK REPAIR, HOMOLOGOUS RECOMBINATION, MITOTIC RECOMBINATION, RAD52 PROTEIN, GENE CONVERSION, INVERTED-REPEAT, CROSSING-OVER

View graph of relations

Download statistics

No data available

ID: 51655524