First test of Verlinde's theory of emergent gravity using weak gravitational lensing measurements

Brouwer, M. M., Visser, M. R., Dvornik, A., Hoekstra, H., Kuijken, K., Valentijn, E. A., Bilicki, M., Blake, C., Brough, S., Buddelmeijer, H., Erben, T., Heymans, C., Hildebrandt, H., Holwerda, B. W., Hopkins, A. M., Klaes, D., Liske, J., Loveday, J., McFarland, J., Nakajima, R., Sifón, C. & Taylor, E. N., 6-Dec-2016, In : Monthly Notice of the Royal Astronomical Society. 466, 3, p. 2547–2559 14 p.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard



Verlinde proposed that the observed excess gravity in galaxies and clusters is the consequence of emergent gravity (EG). In this theory, the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter. EG gives an estimate of the excess gravity (described as an apparent dark matter density) in terms of the baryonic mass distribution and the Hubble parameter. In this work, we present the first test of EG using weak gravitational lensing, within the regime of validity of the current model. Although there is no direct description of lensing and cosmology in EG yet, we can make a reasonable estimate of the expected lensing signal of low-redshift galaxies by assuming a background Lambda cold dark matter cosmology. We measure the (apparent) average surface mass density profiles of 33 613 isolated central galaxies and compare them to those predicted by EG based on the galaxies' baryonic masses. To this end, we employ the ̃180 deg2 overlap of the Kilo-Degree Survey with the spectroscopic Galaxy And Mass Assembly survey. We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory.
Original languageEnglish
Pages (from-to)2547–2559
Number of pages14
JournalMonthly Notice of the Royal Astronomical Society
Issue number3
Publication statusPublished - 6-Dec-2016


  • astro-ph.CO, hep-th

Download statistics

No data available

ID: 37891801