Publication

Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation

Houdijk, H., Wezenberg, D., Hak, L. & Cutti, A. G., 5-Sep-2018, In : Journal of Neuroengineering and Rehabilitation. 15, 8 p., 76.

Research output: Contribution to journalArticleAcademicpeer-review

  • Han Houdijk
  • Daphne Wezenberg
  • Laura Hak
  • Andrea Giovanni Cutti

Background: Energy storing and return (ESAR) feet are generally preferred over solid ankle cushioned heel (SACH) feet by people with a lower limb amputation. While ESAR feet have been shown to have only limited effect on gait economy, other functional benefits should account for this preference. A simple biomechanical model suggests that enhanced gait stability and gait symmetry could prove to explain part of the difference in the subjective preference between both feet.

Aim: To investigate whether increased push-off power with ESAR feet increases center of mass velocity at push off and enhance intact step length and step length symmetry while preserving the margin of stability during walking in people with a transtibial prosthesis.

Methods: Fifteen people with a unilateral transtibial amputation walked with their prescribed ESAR foot and a SACH foot at a fixed walking speed (1.2 m/s) over a level walkway while kinematic and kinetic data were collected. Push-off work generated by the foot, center of mass velocity, step length, step length symmetry and backward margin of stability were assessed and compared between feet.

Results: Push-off work was significantly higher when using the ESAR foot compared to the SACH foot. Simultaneously, center of mass velocity at toe-off was higher with ESAR compared to SACH, and intact step length and step length symmetry increased without reducing the backward margin of stability.

Conclusion: Compared to the SACH foot, the ESAR foot allowed an improvement of step length symmetry while preserving the backward margin of stability at community ambulation speed. These benefits may possibly contribute to the subjective preference for ESAR feet in people with a lower limb amputation.

Original languageEnglish
Article number76
Number of pages8
JournalJournal of Neuroengineering and Rehabilitation
Volume15
Publication statusPublished - 5-Sep-2018
Externally publishedYes
Event2nd World Congress of the American-Orthotic-and-Prosthetic-Association (AOPA) - Las Vegas
Duration: 6-Sep-20179-Sep-2017

Event

2nd World Congress of the American-Orthotic-and-Prosthetic-Association (AOPA)

06/09/201709/09/2017

Las Vegas

Event: Conference

    Keywords

  • Amputation, Prosthesis, Stability, Symmetry, Gait, Rehabilitation, AMPUTEE WALKING, BALANCE CONFIDENCE, FOOT STIFFNESS, KNEE, GAIT, STORAGE, SACH, MUSCLE, INDIVIDUALS, TRANSITION

ID: 134453405