Publication

Emergence of light-driven protometabolism on recruitment of a photocatalytic cofactor by a self-replicator

Monreal Santiago, G., Liu, K., Browne, W. R. & Otto, S., Jul-2020, In : Nature Chemistry. 12, 7, p. 603-607 10 p.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard

Documents

  • Final aut- Emergence of light-driven protometabolism on recruitment of a photocatalytic cofactor by a self-replicator

    Final author's version, 915 KB, PDF document

    Embargo ends: 26/12/2020

    Request copy

  • Emergence of light-driven protometabolism on recruitment of a photocatalytic cofactor by a self-replicator

    Final publisher's version, 1.45 MB, PDF document

    Request copy

DOI

Establishing how life can emerge from inanimate matter is among the grand challenges of contemporary science. Chemical systems that capture life's essential characteristics-replication, metabolism and compartmentalization-offer a route to understanding this momentous process. The synthesis of life, whether based on canonical biomolecules or fully synthetic molecules, requires the functional integration of these three characteristics. Here we show how a system of fully synthetic self-replicating molecules, on recruiting a cofactor, acquires the ability to transform thiols in its environment into disulfide precursors from which the molecules can replicate. The binding of replicator and cofactor enhances the activity of the latter in oxidizing thiols into disulfides through photoredox catalysis and thereby accelerates replication by increasing the availability of the disulfide precursors. This positive feedback marks the emergence of light-driven protometabolism in a system that bears no resemblance to canonical biochemistry and constitutes a major step towards the highly challenging aim of creating a new and completely synthetic form of life.

The integration of replication with metabolism represents a key step in the transition of chemistry into biology. Now, it has been shown that a self-replicator can recruit and activate two different photocatalytic cofactors, which then catalyse the synthesis of the precursors for the replicator.

Original languageEnglish
Pages (from-to)603-607
Number of pages10
JournalNature Chemistry
Volume12
Issue number7
Publication statusPublished - Jul-2020

    Keywords

  • SINGLET OXYGEN, WATER, MODEL, LIFE, EVOLUTION

ID: 129199190