Convolutional neural network to predict the local recurrence of giant cell tumor of bone after curettage based on pre-surgery magnetic resonance images

He, Y., Guo, J., Ding, X., van Ooijen, P. M. A., Zhang, Y., Chen, A., Oudkerk, M. & Xie, X., 2019, In : European Radiology.

Research output: Contribution to journalArticleAcademicpeer-review

OBJECTIVE: To predict the local recurrence of giant cell bone tumors (GCTB) on MR features and the clinical characteristics after curettage using a deep convolutional neural network (CNN).

METHODS: MR images were collected from 56 patients with histopathologically confirmed GCTB after curettage who were followed up for 5.8 years (range, 2.0 to 9.5 years). The inception v3 CNN architecture was fine-tuned by two categories of the MR datasets (recurrent and non-recurrent GCTB) obtained through data augmentation and was validated using fourfold cross-validation to evaluate its generalization ability. Twenty-eight cases (50%) were chosen as the training dataset for the CNN and four radiologists, while the remaining 28 cases (50%) were used as the test dataset. A binary logistic regression model was established to predict recurrent GCTB by combining the CNN prediction and patient features (age and tumor location). Accuracy and sensitivity were used to evaluate the prediction performance.

RESULTS: When comparing the CNN, CNN regression, and radiologists, the accuracies of the CNN and CNN regression models were 75.5% (95% CI 55.1 to 89.3%) and 78.6% (59.0 to 91.7%), respectively, which were higher than the 64.3% (44.1 to 81.4%) accuracy of the radiologists. The sensitivities were 85.7% (42.1 to 99.6%) and 87.5% (47.3 to 99.7%), respectively, which were higher than the 58.3% (27.7 to 84.8%) sensitivity of the radiologists (p < 0.05).

CONCLUSION: The CNN has the potential to predict recurrent GCTB after curettage. A binary regression model combined with patient characteristics improves its prediction accuracy.

KEY POINTS: • Convolutional neural network (CNN) can be trained successfully on a limited number of pre-surgery MR images, by fine-tuning a pre-trained CNN architecture. • CNN has an accuracy of 75.5% to predict post-surgery recurrence of giant cell tumors of bone, which surpasses the 64.3% accuracy of human observation. • A binary logistic regression model combining CNN prediction rate, patient age, and tumor location improves the accuracy to predict post-surgery recurrence of giant cell bone tumors to 78.6%.

Original languageEnglish
JournalEuropean Radiology
Publication statusE-pub ahead of print - 2019

View graph of relations

ID: 93430954