Publication

Biochemical properties of a Pseudomonas aminotransferase involved in caprolactam metabolism

Palacio, C. M., Rozeboom, H. J., Lanfranchi, E., Meng, Q., Otzen, M. & Janssen, D. B., Oct-2019, In : The FEBS Journal. 286, 20, p. 4086-4102 17 p., 14950.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard

Documents

  • Biochemical properties of aPseudomonasaminotransferase involved in caprolactam metabolism

    Final publisher's version, 2.4 MB, PDF document

    Request copy

DOI

The biodegradation of the nylon-6 precursor caprolactam by a strain of Pseudomonas jessenii proceeds via ATP-dependent hydrolytic ring-opening to 6-aminohexanoate. This non-natural ω-amino acid is converted to 6-oxohexanoic acid by an aminotransferase (PjAT) belonging to the fold type I PLP enzymes. To understand the structural basis of 6-aminohexanoatate conversion, we solved different crystal structures and determined the substrate scope with a range of aliphatic and aromatic amines. Comparison with the homologous aminotransferases from Chromobacterium violaceum (CvAT) and Vibrio fluvialis (VfAT) showed that the PjAT enzyme has the lowest KM values (highest affinity) and highest specificity constant (kcat /KM ) with the caprolactam degradation intermediates 6-aminohexanoate and 6-oxohexanoic acid, in accordance with its proposed in vivo function. Five distinct three-dimensional structures of PjAT were solved by protein crystallography. The structure of the aldimine intermediate formed from 6-aminohexanoate and the PLP cofactor revealed the presence of a narrow hydrophobic substrate-binding tunnel leading to the cofactor and covered by a flexible arginine, which explains the high activity and selectivity of the PjAT with 6-aminohexanoate. The results suggest that the degradation pathway for caprolactam has recruited an aminotransferase that is well adapted to 6-aminohexanoate degradation. This article is protected by copyright. All rights reserved.

Original languageEnglish
Article number14950
Pages (from-to)4086-4102
Number of pages17
JournalThe FEBS Journal
Volume286
Issue number20
Early online date4-Jun-2019
Publication statusPublished - Oct-2019

    Keywords

  • Caprolactam, nylon 6, 6-aminohexanoic acid, deamination, aminotransferase, protein structure, substrate specificity, pyridoxal phosphate, LYSINE EPSILON-AMINOTRANSFERASE, AMINE-PYRUVATE TRANSAMINASE, SUBSTRATE-SPECIFICITY, CRYSTAL-STRUCTURES, VIBRIO-FLUVIALIS, ACTIVE-SITE, OMEGA-AMINOTRANSFERASE, ASYMMETRIC-SYNTHESIS, KINETIC RESOLUTION, WASTE-WATER

ID: 84548213