Publication

Artificial Intelligence in Mitral Valve Analysis

Jeganathan, J., Knio, Z., Amador, Y., Hai, T., Khamooshian, A., Matyal, R., Khabbaz, K. R. & Mahmood, F., 2017, In : Annals of cardiac anaesthesia. 20, 2, p. 129-134 6 p.

Research output: Contribution to journalArticleAcademicpeer-review

  • Jelliffe Jeganathan
  • Ziyad Knio
  • Yannis Amador
  • Ting Hai
  • Arash Khamooshian
  • Robina Matyal
  • Kamal R. Khabbaz
  • Feroze Mahmood

Background: Echocardiographic analysis of mitral valve (MV) has become essential for diagnosis and management of patients with MV disease. Currently, the various software used for MV analysis require manual input and are prone to interobserver variability in the measurements. Aim: The aim of this study is to determine the interobserver variability in an automated software that uses artificial intelligence for MV analysis. Settings and Design: Retrospective analysis of intraoperative three-dimensional transesophageal echocardiography data acquired from four patients with normal MV undergoing coronary artery bypass graft surgery in a tertiary hospital. Materials and Methods: Echocardiographic data were analyzed using the eSie Valve Software (Siemens Healthcare, Mountain View, CA, USA). Three examiners analyzed three end-systolic (ES) frames from each of the four patients. A total of 36 ES frames were analyzed and included in the study. Statistical Analysis: A multiple mixed-effects ANOVA model was constructed to determine if the examiner, the patient, and the loop had a significant effect on the average value of each parameter. A Bonferroni correction was used to correct for multiple comparisons, and P = 0.0083 was considered to be significant. Results: Examiners did not have an effect on any of the six parameters tested. Patient and loop had an effect on the average parameter value for each of the six parameters as expected (P <0.0083 for both). Conclusion: We were able to conclude that using automated analysis, it is possible to obtain results with good reproducibility, which only requires minimal user intervention.

Original languageEnglish
Pages (from-to)129-134
Number of pages6
JournalAnnals of cardiac anaesthesia
Volume20
Issue number2
Publication statusPublished - 2017

    Keywords

  • Artificial intelligence, eSie Valve Software, interobserver variability, mitral valve, mitral valve analysis, ALGORITHMS

ID: 67291417