Publication

Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers

van Leeuwe, M. A., Webb, A. L., Venables, H. J., Visser, R. J. W., Meredith, M. P., Elzenga, J. T. M. & Stefels, J., 15-Jun-2020, In : Limnology and Oceanography. 65, 7, p. 1651-1668 18 p.

Research output: Contribution to journalArticleAcademicpeer-review

Coastal zones of Antarctica harbor rich but highly variable phytoplankton communities. The mechanisms that control the dynamics of these communities are not well defined. Here we elucidate the mechanisms that drive seasonal species succession, based on algal photophysiological characteristics and environmental factors. For this, phytoplankton community structure together with oceanographic parameters was studied over a 5-year period (2012-2017) at Rothera Station at Ryder Bay (Western Antarctic Peninsula). Algal pigment patterns and photophysiological studies based on fluorescence analyses were combined with data from the Rothera Time-Series program. Considerable interannual variation was observed, related to variations in wind-mixing, ice cover and an El Nino event. Clear patterns in the succession of algal classes became manifest when combining the data collected over the five successive years. In spring, autotrophic flagellates with a high light affinity were the first to profit from increasing light and sea ice melt. These algae most likely originated from sea-ice communities, stressing the role of sea ice as a seeding vector for the spring bloom. Diatoms became dominant towards summer in more stratified and warmer surface waters. These communities displayed significantly lower photoflexibility than spring communities. There are strong indications for mixotrophy in cryptophytes, which would explain much of their apparently random occurrence. Climate models predict continuing retreat of Antarctic sea-ice during the course of this century. For the near-future we predict that the marginal sea-ice zone will still harbor significant communities of haptophytes and chlorophytes, whereas increasing temperatures will mainly be beneficial for diatoms.

Original languageEnglish
Pages (from-to)1651-1668
Number of pages18
JournalLimnology and Oceanography
Volume65
Issue number7
Publication statusPublished - 15-Jun-2020

    Keywords

  • NORTHERN MARGUERITE BAY, ICE-ZONE WEST, SEA-ICE, PHAEOCYSTIS-ANTARCTICA, CLIMATE-CHANGE, ROSS SEA, INTERANNUAL VARIABILITY, SPATIAL VARIABILITY, COMMUNITY STRUCTURE, PENINSULA

Download statistics

No data available

ID: 129206361