Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

Lundby, A., Rossin, E. J., Steffensen, A. B., Acha, M. R., Newton-Cheh, C., Pfeufer, A., Lyneh, S. N., Olesen, S-P., Brunak, S., Ellinor, P. T., Jukema, J. W., Trompet, S., Ford, I., Macfarlane, P. W., Krijthe, B. P., Hofman, A., Uitterlinden, A. G., Stricker, B. H., Nathoe, H. M., Spiering, W., Daly, M. J., Asselbergs, I. W., van der Harst, P., Milan, D. J., de Bakker, P. I. W., Lage, K., Olsen, J. V. & QT Interval Int GWAS Consortium QT, Aug-2014, In : Nature Methods. 11, 8, p. 868-874 7 p.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard


  • Annotation of loci from genome-wide association studies using tissue-specific

    Final publisher's version, 2 MB, PDF document

    Request copy


  • Alicia Lundby
  • Elizabeth J. Rossin
  • Annette B. Steffensen
  • Moshe Ray Acha
  • Christopher Newton-Cheh
  • Arne Pfeufer
  • Stacey N. Lyneh
  • Soren-Peter Olesen
  • Soren Brunak
  • Patrick T. Ellinor
  • J. Wouter Jukema
  • Stella Trompet
  • Ian Ford
  • Peter W. Macfarlane
  • Bouwe P. Krijthe
  • Albert Hofman
  • Andre G. Uitterlinden
  • Bruno H. Stricker
  • Hendrik M. Nathoe
  • Wilko Spiering
  • Mark J. Daly
  • Ikea W. Asselbergs
  • Pim van der Harst
  • David J. Milan
  • Paul I. W. de Bakker
  • Kasper Lage
  • Jesper V. Olsen
  • QT Interval Int GWAS Consortium QT

Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes involved in the Mendelian disorder long QT syndrome (LOTS). We integrated the LOTS network with GWAS loci from the corresponding common complex trait, QT-interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LOTS protein network to filter weak GWAS signals by identifying single-nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics.

Original languageEnglish
Pages (from-to)868-874
Number of pages7
JournalNature Methods
Issue number8
Publication statusPublished - Aug-2014



ID: 14193651