Publication

Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent

Lahive, C. W., Deuss, P. J., Lancefield, C. S., Sun, Z., Cordes, D. B., Young, C., Tran, F., Slawin, A. M. Z., de Vries, J. G., Kamer, P. C. J., Westwood, N. J. & Barta, K., 20-Jul-2016, In : Journal of the American Chemical Society. 138, 28, p. 8900-8911 12 p.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard

Documents

  • Pub7_JACS

    Final author's version, 2 MB, PDF document

  • Advanced Model Compounds for Understanding

    Final publisher's version, 2 MB, PDF document

    Request copy

DOI

  • Ciaran W Lahive
  • Peter J Deuss
  • Christopher S Lancefield
  • Zhuohua Sun
  • David B Cordes
  • Claire Young
  • Fanny Tran
  • Alexandra M Z Slawin
  • Johannes G de Vries
  • Paul C J Kamer
  • Nicholas J Westwood
  • Katalin Barta

The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (beta-O-4)-(beta-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected beta-O-4, beta-5, and beta-beta structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.

Original languageEnglish
Pages (from-to)8900-8911
Number of pages12
JournalJournal of the American Chemical Society
Volume138
Issue number28
Publication statusPublished - 20-Jul-2016

    Keywords

  • MOLECULAR-WEIGHT PHENOLS, BETA-O-4 BOND-CLEAVAGE, C-O BONDS, ENANTIOSELECTIVE SYNTHESIS, SELECTIVE OXIDATION, IONIC LIQUID, DEGRADATION, PRODUCTS, ACIDOLYSIS, CONVERSION

Download statistics

No data available

ID: 33288807