Publication

A MoS2-Based Capacitive Displacement Sensor for DNA Sequencing

Smolyanitsky, A., Yakobson, B. I., Wassenaar, T. A., Paulechka, E. & Kroenlein, K., Sep-2016, In : Acs Nano. 10, 9, p. 9009-9016 8 p.

Research output: Contribution to journalArticleAcademicpeer-review

Copy link to clipboard

Documents

  • A MoS2-Based Capacitive Displacement Sensor for DNA Sequencing

    Final publisher's version, 3 MB, PDF document

    Request copy

DOI

We propose an aqueous functionalized molybdenum disulfide nanoribbon suspended over a solid electrode as a capacitive displacement sensor aimed at determining the DNA sequence. The detectable sequencing events arise from the combination of Watson Click base-pairing, one of nature's most basic lock-and-key binding mechanisms, with the ability of appropriately sized atomically thin membranes to flex substantially in response to subnanonewton forces. We employ carefully designed numerical simulations and theoretical estimates to demonstrate excellent (79% to 86%) raw target detection accuracy at similar to 70 million bases per second and electrical measurability of the detected events. In addition, we demonstrate reliable detection of repeated DNA motifs. Finally, we argue that the use of a nanoscale opening (nanopore) is not requisite for the operation of the proposed sensor and present a simplified sensor geometry without the nanopore as part of the sensing element. Our results, therefore, potentially suggest a realistic inherently base-specific, high throughput electronic DNA sequencing device as a cost-effective de novo alternative to the existing methods.

Original languageEnglish
Pages (from-to)9009-9016
Number of pages8
JournalAcs Nano
Volume10
Issue number9
Publication statusPublished - Sep-2016

    Keywords

  • monolayer molybdenum disulfide, nanoelectromechanical, DNA sequencing, molecular sensing, SPACE GAUSSIAN PSEUDOPOTENTIALS, GRAPHENE NANOPORES, MOLYBDENUM-DISULFIDE, NUCLEIC-ACIDS, TRANSLOCATION, MOLECULES, FIELD, MOS2, NANORIBBONS, MEMBRANE

View graph of relations

ID: 65971730