A class of linear solvers based on multilevel and supernodal factorization

Bu, Y., 2018, [Groningen]: University of Groningen. 134 p.

Research output: ThesisThesis fully internal (DIV)Academic

Copy link to clipboard


  • Yiming Bu
The solution of large and sparse linear systems is a critical component of modern science and engineering simulations. Iterative methods, namely the class of modern Krylov subspace methods, are often adopted to solve large-scale linear systems. To improve the robustness and the convergence rate of the iterative methods, preconditioning techniques are often considered crucial components of the linear systems solution. In this thesis, a class of algebraic multilevel solvers is presented for preconditioning general linear systems equations arising from computational science and engineering applications. They can produce sparse patterns and save memory costs by employing recursive combinatorial algorithms. Robustness is enhanced by combining the factorization with recently developed overlapping and compression strategies, and by using efficient local solvers. We have shown the good performance of the proposed strategies with numerical experiments on realistic matrix problems, also in comparison against some of the most popular algebraic preconditioners in use today.
Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Veldman, Arthur, Supervisor
  • Carpentieri, Bruno, Co-supervisor
  • Bisseling, R., Assessment committee, External person
  • Ferronato, M., Assessment committee, External person
  • Hochstenbach, R., Assessment committee, External person
  • Verstappen, Roel, Assessment committee
  • Wubs, Fred, Assessment committee
Award date3-Jul-2018
Place of Publication[Groningen]
Print ISBNs978-94-034-0727-2
Electronic ISBNs978-94-034-0726-5
Publication statusPublished - 2018

Download statistics

No data available

ID: 62267055