Dynamic Systems and Mathematical Physics

University of Groningen > Faculty of Science and Engineering > Faculty Board FSE > FSE Research > Johann Bernoulli Inst. for Math. and CompSc. > Dynamic Systems and Mathematical Physics

  1. 2017
  2. Zaman, M. (2017). Integral Manifolds of the Charged Three-Body Problem [Groningen]: Rijksuniversiteit Groningen
  3. 2016
  4. Hanssmann, H., Hoveijn, I., van Strien, S., & Waalkens, H. (2016). Foreword Special Issue Dynamics and Geometry. In Dynamivs and geometry (Vol. 27, pp. 1029). Elsevier. DOI: 10.1016/j.indag.2016.10.001
  5. 2015
  6. 2014
  7. Behrndt, J., Hassi, S., Wietsma, H., & de Snoo, H. (2014). ANTITONICITY OF THE INVERSE FOR SELFADJOINT MATRICES, OPERATORS, AND RELATIONS. Proceedings of the american mathematical society, 142(8), 2783-2796. [PII S0002-9939(2014)12115-0].
  8. Broer, H. W., Kaashoek, M. A., & Pagter, B. D. (2014). Preface. Indagationes Mathematicae, 25(2), 163. DOI: 10.1016/j.indag.2014.01.001
  9. 2013
  10. Broer, H. W., Klop, J. W., Tijdeman, R., & Wiegerinck, J. J. O. O. (2013). Preface. Indagationes mathematicae-New series, 24(4), 647. DOI: 10.1016/j.indag.2013.09.001
  11. Duminil-Copin, H., & Enter, A. C. D. V. (2013). Sharp metastability threshold for an anisotropic bootstrap percolation model. Annals of probability, 41(3A), 1218-1242. DOI: 10.1214/11-AOP722
  12. Broer, H., Hoveijn, I., & Van Gils, S. A. (Eds.) (2013). Nonlinear dynamical systems and chaos. Basel: Birkhauser.
  13. 2012
  14. Behrndt, J., Hassi, S., de Snoo, H., & Wietsma, R. (2012). Limit properties of monotone matrix functions. Linear Algebra and its Applications, 436(5), 935-953. DOI: 10.1016/j.laa.2011.05.024
  15. 2011
  16. Enter, A. C. D. V., Külske, C., & Opoku, A. A. (2011). Discrete approximations to vector spin models. Journal of physics a-Mathematical and theoretical, 44(47), [475002]. DOI: 10.1088/1751-8113/44/47/475002
  17. Behrndt, J., Hassi, S., de Snoo, H., & Wietsma, R. (2011). Square-integrable solutions and Weyl functions for singular canonical systems. Mathematische Nachrichten, 284(11-12), 1334-1384. DOI: 10.1002/mana.201000017
  18. Behrndt, J., Derkach, V. A., Hassi, S., & Snoo, H. S. V. D. (2011). A realization theorem for generalized Nevanlinna families. Operators and matrices, 5(4), 679-706. DOI: 10.7153/oam-05-49
  19. Dettmann, C. P., Morozov, G. V., Sieber, M., & Waalkens, H. (2011). Microdisk Resonators with Two Point Scatterers. In ICTON: 2011 13th International Conference on Transparent Optical Networks (pp. 1-3). University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.
  20. 2010
  21. Labrousse, J-P., Sandovici, A., Snoo, H. S. V. D., & Winkler, H. (2010). The Kato decomposition of quasi-Fredholm relations. Operators and matrices, 4(1), 1-51.
  22. Enter, A. C. D. V., Fernández, R., Redig, F., & den Hollander, F. (2010). A LARGE-DEVIATION VIEW ON DYNAMICAL GIBBS-NON-GIBBS TRANSITIONS. Moscow mathematical journal, 10(4), 687-711.
  23. Goussev, A., Schubert, R., Waalkens, H., & Wiggins, S. (2010). A Periodic Orbit Formula for Quantum Reactions Through Transition States. In AIP Conf. Proc. (Vol. 1281, pp. 1593-1596)
  24. Broer, H., Takens, F., & Hasselblatt, B. (2010). Handbook of dynamical systems. Elsevier.
Previous 1 2 3 4 5 Next

ID: 32966