Chemical Biology 1
University of Groningen > Faculty of Science and Engineering > Faculty Board FSE > FSE Research > Groningen Biomolecular Sciences and Biotechnology > Chemical Biology 1
1 - 50 out of 58Page size: 50
- 2021
- Galenkamp, N. S., Van Meervelt, V., Mutter, N. L., van der Heide, N. J., Wloka, C., & Maglia, G. (2021). Preparation of Cytolysin A (ClyA) Nanopores. In M. A. Fahie (Ed.), Nanopore Technology: Methods in Molecular Biology (pp. 11-18). (Methods in Molecular Biology; Vol. 2186). Humana Press. https://doi.org/10.1007/978-1-0716-0806-7_2
- Mutter, N. L., Huang, G., van der Heide, N. J., Lucas, F. L. R., Galenkamp, N. S., Maglia, G., & Wloka, C. (2021). Preparation of Fragaceatoxin C (FraC) Nanopores. In M. A. Fahie (Ed.), Nanopore Technology: Methods in Molecular Biology (pp. 3-10). (Methods in Molecular Biology; Vol. 2186). Humana Press. https://doi.org/10.1007/978-1-0716-0806-7_1
- 2020
- Bayoumi, M., Nomidis, S. K., Willems, K., Carlon, E., & Maglia, G. (2020). Autonomous and Active Transport Operated by an Entropic DNA Piston. Nano Letters. https://doi.org/10.1021/acs.nanolett.0c04464
- Ciudad, S., Puig, E., Botzanowski, T., Meigooni, M., Arango, A. S., Do, J., Mayzel, M., Bayoumi, M., Chaignepain, S., Maglia, G., Cianferani, S., Orekhov, V., Tajkhorshid, E., Bardiaux, B., & Carulla, N. (2020). Aβ(1-42) tetramer and octamer structures reveal edge conductivity pores as a mechanism for membrane damage. Nature Communications, 11(1), [3014]. https://doi.org/10.1038/s41467-020-16566-1
- van der Zouwen, A. J. N., Jeucken, A., Steneker, R., Hohmann, K. F., Lohse, J., Slotboom, D. J., & Witte, M. (2020). Iminoboronates as dual purpose linkers in chemical probe development. Chemistry. https://doi.org/10.1002/chem.202005115
- Willems, K., Ruić, D., L R Lucas, F., Barman, U., Verellen, N., Hofkens, J., Maglia, G., & Van Dorpe, P. (2020). Accurate modeling of a biological nanopore with an extended continuum framework. Nanoscale, 12(32), 16775-16795. https://doi.org/10.1039/d0nr03114c
- Huang, G., Willems, K., Bartelds, M., van Dorpe, P., Soskine, M., & Maglia, G. (2020). Electro-Osmotic Vortices Promote the Capture of Folded Proteins by PlyAB Nanopores. Nano Letters, 20(5), 3819-3827. https://doi.org/10.1021/acs.nanolett.0c00877
- Restrepo-Pérez, L., Huang, G., Bohländer, P. R., Worp, N., Eelkema, R., Maglia, G., Joo, C., & Dekker, C. (2020). Erratum. Acs Nano, 14(4), 5148. [acsnano.0c01699]. https://doi.org/10.1021/acsnano.0c01699
- Huang, G., & Maglia, G. (2020). Biological nanopores having tunable pore diameters and uses thereof as analytical tools. (Patent No. WO2020055246).
- Zernia, S., van der Heide, N. J., Galenkamp, N. S., Gouridis, G., & Maglia, G. (2020). Current Blockades of Proteins Inside Nanopores for Real-Time Metabolome Analysis. Acs Nano, 14(2), 2296-2307. [acsnano.9b09434]. https://doi.org/10.1021/acsnano.9b09434
- Willems, K., Ruic, D., Biesemans, A., Galenkamp, N., Van Dorpe, P., & Maglia, G. (2020). Electrophoretic Trapping of a Single Protein Inside a Nanopore. Biophysical Journal, 118(3), 305A-305A.
- Mutter, N. (2020). Control of nanopore formation using external triggers. University of Groningen. https://doi.org/10.33612/diss.131163011
- Galenkamp, N. (2020). Single-molecule enzymology with a ClyA nanopore. University of Groningen. https://doi.org/10.33612/diss.130258760
- 2019
- Restrepo-Pérez, L., Huang, G., Bohländer, P. R., Worp, N., Eelkema, R., Maglia, G., Joo, C., & Dekker, C. (2019). Resolving Chemical Modifications to a Single Amino Acid within a Peptide Using a Biological Nanopore. Acs Nano, 13(12), 13668-13676. https://doi.org/10.1021/acsnano.9b05156
- Restrepo-Pérez, L., Wong, C. H., Maglia, G., Dekker, C., & Joo, C. (2019). Label-Free Detection of Post-translational Modifications with a Nanopore. Nano Letters, 19(11), 7957-7964. https://doi.org/10.1021/acs.nanolett.9b03134
- Willems, K., Ruić, D., Biesemans, A., Galenkamp, N. S., Van Dorpe, P., & Maglia, G. (2019). Engineering and Modeling the Electrophoretic Trapping of a Single Protein Inside a Nanopore. Acs Nano, 13(9), 9980-9992. https://doi.org/10.1021/acsnano.8b09137
- Okada, H., Wloka, C., Wu, J-Q., & Bi, E. (2019). Distinct Roles of Myosin-II Isoforms in Cytokinesis under Normal and Stressed Conditions. iScience , 14, 69-87. https://doi.org/10.1016/j.isci.2019.03.014
- Zhao, S., Restrepo-Pérez, L., Soskine, M., Maglia, G., Joo, C., Dekker, C., & Aksimentiev, A. (2019). Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate. Acs Nano, 13(2), 2398-2409. https://doi.org/10.1021/acsnano.8b09266
- Huang, K. (2019). Engineering biological nanopores for proteomics study. University of Groningen. https://doi.org/10.33612/diss.102598418
- 2018
- Mutter, N. L., Soskine, M., Huang, G., Albuquerque, I. S., Bernardes, G. J. L., & Maglia, G. (2018). Modular pore-forming immunotoxins with caged cytotoxicity tailored by directed evolution. ACS chemical biology, 13(11), 3153–3160. [8b00720]. https://doi.org/10.1021/acschembio.8b00720
- Nomidis, S. K., Hooyberghs, J., Maglia, G., & Carlon, E. (2018). DNA capture into the ClyA nanopore: Diffusion-limited versus reaction-limited processes. Journal of Physics-Condensed Matter, 30(30), [304001]. https://doi.org/10.1088/1361-648X/aacc01
- Maglia, G., Wloka, C., Mutter, N. L., Soskine, M., & Huang, G. (2018). Biological nanopores for biopolymer sensing and sequencing based on frac actinoporin. (Patent No. WO2018012963). https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=WO&NR=2018012963A1&KC=A1&FT=D&ND=3&date=20180118&DB=&locale=en_EP
- Wilmaerts, D., Bayoumi, M., Dewachter, L., Knapen, W., Mika, J. T., Hofkens, J., Dedecker, P., Maglia, G., Verstraeten, N., & Michiels, J. (2018). The Persistence-Inducing Toxin HokB Forms Dynamic Pores That Cause ATP Leakage. Mbio, 9(4), [ARTN e00744-18]. https://doi.org/10.1128/mBio.00744-18
- 2017
- Van Meervelt, V., Soskine, M., Singh, S., Schuurman-Wolters, G., Wijma, H. J., Poolman, B., & Maglia, G. (2017). Real-time conformational changes and controlled orientation of native proteins inside a protein nanoreactor. Journal of the American Chemical Society, 139(51), 18640-18646. [jacs.7b10106]. https://doi.org/10.1021/jacs.7b10106
- Huang, G., Willems, K., Soskine, M., Wloka, C., & Maglia, G. (2017). Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nature Communications, 8, 1-11. [935]. https://doi.org/10.1038/s41467-017-01006-4
- Oh, Y., Schreiter, J. H., Okada, H., Wloka, C., Okada, S., Yan, D., Duan, X., & Bi, E. (2017). Hof1 and Chs4 Interact via F-BAR Domain and Sel1-like Repeats to Control Extracellular Matrix Deposition during Cytokinesis. Current Biology, 27(18), 2878-+. https://doi.org/10.1016/j.cub.2017.08.032
- Aminipour, Z., Khorshid, M., Bayoumi, M., Losada-Perez, P., Thoelen, R., Bonakdar, S., Keshvari, H., Maglia, G., Wagner, P., & Van der Bruggen, B. (2017). Formation and electrical characterization of black lipid membranes in porous filter materials. Physica Status Solidi A-Applications and materials science, 214(9), [1700104]. https://doi.org/10.1002/pssa.201700104
- Willems, K., Van Meervelt, V., Wloka, C., & Maglia, G. (2017). Single-molecule nanopore enzymology. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 372(1726), [20160230]. https://doi.org/10.1098/rstb.2016.0230
- Bayoumi, M., Bayley, H., Maglia, G., & Sapra, K. T. (2017). Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells. Scientific Reports, 7, 1-11. [45167]. https://doi.org/10.1038/srep45167
- Wloka, C., Van Meervelt, V., van Gelder, D., Danda, N., Jager, N., Williams, C. P., & Maglia, G. (2017). Label-Free and Real-Time Detection of Protein Ubiquitination with a Biological Nanopore. Acs Nano, 11(5), 4387-4394. [acsnano.6b07760]. https://doi.org/10.1021/acsnano.6b07760
- Loveridge, E. J., Hroch, L., Hughes, R. L., Williams, T., Davies, R. L., Angelastro, A., Luk, L. Y. P., Maglia, G., & Allemann, R. K. (2017). Reduction of Folate by Dihydrofolate Reductase from Thermotoga maritima. Biochemistry, 56(13), 1879-1886. [acs.biochem.6b01268]. https://doi.org/10.1021/acs.biochem.6b01268
- Okada, S., Wloka, C., & Bi, E. (2017). Analysis of protein dynamics during cytokinesis in budding yeast. In A. Echard (Ed.), Cytokinesis (1 ed., pp. 25-45). (Methods in Cell Biology; Vol. 137). Elsevier. https://doi.org/10.1016/bs.mcb.2016.04.002
- 2016
- Maglia, G., Soskine, M., Biesemans, A., Meervelt, V., & Poolman, B. (2016). Nanopores with internal protein adaptors. (Patent No. WO2016166232). https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=WO&NR=2016166232A1&KC=A1&FT=D&ND=3&date=20161020&DB=&locale=en_EP
- Serra-Batiste, M., Ninot-Pedrosa, M., Bayoumi, M., Gairí, M., Maglia, G., & Carulla, N. (2016). Aβ42 assembles into specific β-barrel pore-forming oligomers in membrane-mimicking environments. Proceedings of the National Academy of Sciences of the United States of America, 113(39), 10866-10871. https://doi.org/10.1073/pnas.1605104113
- Franceschini, L., Brouns, T., Willems, K., Carlon, E., & Maglia, G. (2016). DNA Translocation through Nanopores at Physiological Ionic Strengths Requires Precise Nanoscale Engineering. Acs Nano, 10(9), 8394-8402. https://doi.org/10.1021/acsnano.6b03159
- McGinn, S., Bauer, D., Brefort, T., Dong, L., El-Sagheer, A., Elsharawy, A., Evans, G., Falk-Sörqvist, E., Forster, M., Fredriksson, S., Freeman, P., Freitag, C., Fritzsche, J., Gibson, S., Gullberg, M., Gut, M., Heath, S., Heath-Brun, I., Heron, A. J., ... Gut, I. G. (2016). New Technologies for DNA analysis-A review of the READNA Project. New Biotechnology, 33(3), 311-330. https://doi.org/10.1016/j.nbt.2015.10.003
- Biesemans, A., Soskine, M., & Maglia, G. (2016). Controlling the Nanoscopic Confinement of Enzymes Inside ClyA Nanopores for Single-Protein Studies. Biophysical Journal, 110(3, Supplement 1), 518A-518A. https://doi.org/10.1016/j.bpj.2015.11.2769
- Vega, M., Perez, M. S., Granell, P., Golmar, F., Wloka, C., Maglia, G., Dieguez, M. J., Del Valle, E. M., Lasorsa, C., & Lerner, B. (2016). Effect of butanol and salt concentration on solid-state nanopores resistance. Cogent chemistry, 2, [1225345]. https://doi.org/10.1080/23312009.2016.1225345
- 2015
- Ho, C-W., Meervelt, V., Tsai, K-C., De Temmerman, P-J., Mast, J., & Maglia, G. (2015). Engineering a nanopore with co-chaperonin function. Science Advances, 1(11), [e1500905]. https://doi.org/10.1126/sciadv.1500905
- Biesemans, A., Soskine, M., & Maglia, G. (2015). A Protein Rotaxane Controls the Translocation of Proteins Across a ClyA Nanopore. Nano Letters. https://doi.org/10.1021/acs.nanolett.5b02309
- Soskine, M., Biesemans, A., & Maglia, G. (2015). Single-Molecule Analyte Recognition with ClyA Nanopores Equipped with Internal Protein Adaptors. Journal of the American Chemical Society, 137(17), 5793-7. https://doi.org/10.1021/jacs.5b01520
- Stoddart, D., Franceschini, L., Heron, A., Bayley, H., & Maglia, G. (2015). DNA stretching and optimization of nucleobase recognition in enzymatic nanopore sequencing. Nanotechnology, 26(8), [084002]. https://doi.org/10.1088/0957-4484/26/8/084002
- 2014
- Van Meervelt, V., Soskine, M., & Maglia, G. (2014). Detection of Two Isomeric Binding Configurations in a Protein-Aptamer Complex with a Biological Nanopore. Acs Nano, 8(12), 12826-12835. https://doi.org/10.1021/nn506077e
ID: 25270972