1. 2019
  2. Sillitti, A., Schomaker, L., Anakabe, J. F., Basurko, J., Dam, P., Ferreira, H., ... Zurutuza, U. (2019). Providing Proactiveness: Data Analysis Techniques Portfolios. In M. Albano, E. Jantunen, G. Papa, & U. Zurutuza (Eds.), The MANTIS Book : Cyber Physical System Based Proactive Collaborative Maintenance (pp. 145-238). Gistrup (DK): River Publishers.
  3. Bhole, A., Falzon, O., Biehl, M., & Azzopardi, G. (2019). A Computer Vision Pipeline that Uses Thermal and RGB Images for the Recognition of Holstein Cattle. In M. Vento, & G. Percannella (Eds.), Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Salerno, Italy, September 3–5, 2019, Proceedings, Part II (pp. 108-119). (Lecture Notes in Computer Science; Vol. 11679). Cham: Springer. https://doi.org/10.1007/978-3-030-29891-3_10
  4. Babai, M., Chowdhury, A. S., & Wilkinson, M. H. F. (2019). A Graph Formalism for Time and Memory Efficient Morphological Attribute-Space Connected Filters. In B. Burget, A. Kleefeld, B. Naegel, N. Passat, & B. Perret (Eds.), Mathematical Morphology and Its Applications to Signal and Image Processing (pp. 281-294). (Lecture Notes in Computer Science; Vol. 11564), (Image Processing, Computer Vision, Pattern Recognition, and Graphics; Vol. 11564). Springer International Publishing. https://doi.org/10.1007/978-3-030-20867-7_22
  5. Bosnic, A., & Spenader, J. (2019). Acquisition Path of Distributive Markers in Serbian and Dutch: Evidence from an Act-Out Task. In M. M. Brown, & B. Dailey (Eds.), Proceedings of the 43rd Boston University Conference on Language Development (pp. 94-108). Somerville, MA: Cascadilla Press.
  6. Shafiee Kamalabad, M. (2019). Advanced non-homogeneous dynamic Bayesian network models for statistical analyses of time series data. [Groningen]: University of Groningen.
  7. Bhole, A., Falzon, O., Biehl, M., & Azzopardi, G. (2019). Automatic identification of Holstein cattle using a non-invasive computer vision approach. In M. Vento, & G. Percanella (Eds.), Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Salerno, Italy, September 3–5, 2019, Proceedings, Part I (Lecture Notes in Computer Science), ( Lecture Notes in Computer Science book series; Vol. 11678). Springer. https://doi.org/10.1007/978-3-030-29888-3_23
  8. Dijkstra, K., van de Loosdrecht, J., Schomaker, L. R. B., & Wiering, M. A. (2019). CentroidNet: A Deep Neural Network for Joint Object Localization and Counting. In U. Brefeld, E. Curry, E. Daly, B. MacNamee, A. Marascu, F. Pinelli, M. Berlingerio, ... N. Hurly (Eds.), ECML PKDD 2018: Machine Learning and Knowledge Discovery in Databases (pp. 585-601). ( Lecture Notes in Computer Science; Vol. 11053). Cham: Springer. https://doi.org/10.1007/978-3-030-10997-4_36
  9. Kind, A., & Azzopardi, G. (2019). Computer-Aided Detection System for Diabetic Retinopathy using Retinal Fundus Images. In M. Vento, & G. Percanella (Eds.), International Conference on Computer Analysis of Images and Patterns (Vol. Part 1, pp. 457-468). (Computer Analysis of Images and Patterns; Vol. 11678). Cham: Springer. https://doi.org/10.1007/978-3-030-29888-3_37
  10. Seri, M. (Photographer), Vermeeren, M. (Developer), & Bravetti, A. (Developer). (2019). Contact variational integrators: support code. Software https://doi.org/10.5281/zenodo.3359792
  11. Okafor, E. (2019). Deep learning for animal recognition. [Groningen]: University of Groningen.
  12. Ji, Y., van Rij, J., & Taatgen, N. (2019). Discoveries of the Algebraic Mind: A PRIMs Model. In Proceedings of 17th International conference on cognitive modeling
  13. Keshavarzi Zafarghandi, A., Verbrugge, R., & Verheij, B. (2019). Discussion Games for Preferred Semantics of Abstract Dialectical Frameworks. In G. Kern-Isberner, & Z. Ognjanović (Eds.), Symbolic and Quantitative Approaches to Reasoning with Uncertainty (pp. 62-73). (Lecture Notes in Computer Science ; Vol. 11726). Cham: Springer. https://doi.org/10.1007/978-3-030-29765-7_6
  14. Caires, L., Pérez, J. A., Pfenning, F., & Toninho, B. (2019). Domain-Aware Session Types. In W. Fokkink, & R. V. Glabbeek (Eds.), 30th International Conference on Concurrency Theory (CONCUR 2019) (pp. 35:1-35:17). (Leibniz International Proceedings in Informatics (LIPIcs); Vol. 140). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. https://doi.org/10.4230/LIPIcs.CONCUR.2019.39
  15. Keshavarzi Zafarghandi, A., Verheij, B., & Verbrugge, L. (2019). Embedding Probabilities, Utilities and Decisions in a Generalization of Abstract Dialectical Frameworks. In Proceedings of the Eleventh International Symposium on Imprecise Probabilities: Theories and Applications (ISIPTA) (1 ed., Vol. 103, pp. 246-255). SIPTA.
  16. Szabó, R. (2019). Inhomogeneous contact process and percolation. [Groningen]: Rijksuniversiteit Groningen.
  17. Sas, D., Avgeriou, P., & Arcelli Fontana, F. (2019). Investigating instability architectural smells evolution: an exploratory case study. In 35th International Conference on Software Maintenance and Evolution IEEE.
  18. van der Velde, M., Sense, F., Borst, J., & van Rijn, H. (2019). Kickstarting Adaptive Fact Learning Using Bayesian Modelling. Poster session presented at 17th International Conference on Cognitive Modeling, Montreal, Canada.
  19. de Oliveira, G., Bolanos, M., Talavera Martínez, E., Gelonch, O., Garolera, M., & Radeva, P. (2019). Lifelog retrieval for memory stimulation of people with memory impairment. In Multimodal behavior analysis in the wild: Advances and challenges (pp. 135-158) https://doi.org/10.1016/B978-0-12-814601-9.00016-X
  20. Mohades Kasaei, H. (Accepted/In press). Look Further to Recognize Better: Learning Shared Topics and Category-Specific Dictionaries for Open-Ended 3D Object Recognition. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) IEEE.
  21. Charalampidou, S. (2019). Managing technical debt through software metrics, refactoring and traceability. [Groningen]: University of Groningen.
  22. Song, W. (2019). Matrix-based techniques for (flow-)transition studies. [Groningen]: University of Groningen.
  23. Vugt, M. V. (2019). Mindfulness as a Potential Tool for Productivity. In C. Sadowski, & T. Zimmermann (Eds.), Rethinking Productivity in Software Engineering (pp. 293-302). (Rethinking Productivity in Software Engineering). Apress. https://doi.org/10.1007/978-1-4842-4221-6_25
  24. Arslanagic, A., Pérez, J. A., & Voogd, E. (2019). Minimal Session Types. In A. F. Donaldson (Ed.), 33rd European Conference on Object-Oriented Programming (ECOOP 2019) (Leibniz International Proceedings in Informatics (LIPIcs); Vol. 134). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. https://doi.org/10.4230/LIPIcs.ECOOP.2019.23
  25. van der Heiden, H. J. L. (2019). Modelling viscous effects in offshore flow problems: A numerical study. [Groningen]: Rijksuniversiteit Groningen.
Previous 1 2 3 4 5 6 7 8 ...113 Next

ID: 61696742