1. 2019
  2. Biehl, M., Caticha, N., Opper, M., & Villmann, T. (2019). Statistical Physics of Learning and Inference. In M. Verleysen (Ed.), Proc. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning : ESANN 2019 Ciaco - i6doc.com.
  3. Biehl, M. (2019). Supervised Learning - An Introduction: Lectures given at the 30th Canary Islands Winter School of Astrophysics. (Machine Learning Reports; Vol. 01/2019). Mittweida, Germany: Machine Learning Reports.
  4. Blaauw, F., Overbeek, R., Albers, T., Vlek, J., Maessen, M., Gooijer, J., ... Lazovik, A. (2019). ECiDA: Evolutionary Changes in Data Analysis. Poster session presented at ICT.Open, Hilversum, Netherlands. https://doi.org/10.13140/RG.2.2.33143.47524
  5. Biehl, M., Abadi, F., Göpfert, C., & Hammer, B. (2019). Prototype-based classifiers in the presence of concept drift: A modelling framework. ArXiv e-prints, 1903.07273 (1903.07273 ), [1903.07273 ].
  6. van Beers, F., Lindström, A., Okafor, E., & Wiering, M. (2019). Deep Neural Networks with Intersection over Union Loss for Binary Image Segmentation. In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods (Vol. 1 ICPRAM, pp. 438-445). Prague: SciTePress. https://doi.org/10.5220/0007347504380445
  7. Ansó, N., Wiehe, A., Drugan, M., & Wiering, M. (2019). Deep Reinforcement Learning for Pellet Eating in Agar.io. In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (Vol. 2, ICAART, pp. 123-133). Prague: SciTePress. https://doi.org/10.5220/0007360901230133
  8. Wolf, B., & van Netten, S. (2019). Training submerged source detection for a 2D fluid flow sensor array with Extreme Learning Machines. In Eleventh International Conference on Machine Vision (ICMV 2018) (Vol. 11041, pp. 1104126). SPIE.Digital Library. https://doi.org/10.1117/12.2522667
  9. Costa, A. C., Barufaldi, B., Borges, L. R., Biehl, M., Maidment, A. D. A., & Vieira, M. A. C. (2019). Analysis of feature relevance using an image quality index applied to digital mammography. In SPIE Medical Imaging 2019 (Vol. 10948). [109485R] San Diego, CA, USA: Society of Photo-Optical Instrumentation Engineers (SPIE). https://doi.org/10.1117/12.2512975
  10. Pfannschmidt, L., Jakob, J., Biehl, M., Tino, P., & Hammer, B. (2019). Feature Relevance Bounds for Ordinal Regression. ArXiv e-prints.
  11. Marlevi, D., Ruijsink, B., Balmus, M., Dillon-Murphy, D., Fovargue, D., Pushparajah, K., ... Nordsletten, D. A. (2019). Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy. Scientific Reports, 9, [1375]. https://doi.org/10.1038/s41598-018-37714-0
  12. Boulogne, L., Dijkstra, K., & Wiering, M. (2019). Extra Domain Data Generation with Generative Adversarial Nets. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018 (pp. 1403-1410). (Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018; Vol. 13, No. 2). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/SSCI.2018.8628701
  13. van Vugt, M. K., Moye, A., Pollock, J., Johnson, B., Bonn-Miller, M. O., Gyatso, K., ... Fresco, D. M. (2019). Tibetan Buddhist monastic debate: Psychological and neuroscientific analysis of a reasoning-based analytical meditation practice. In Imagining the Brain: Episodes in the History of Brain Research (Progress in brain research). Elsevier. https://doi.org/10.1016/bs.pbr.2018.10.018
  14. Ionica, S., Kilicer, P., Lauter, K., Garcia, E. L., Massierer, M., Manzateanu, A., & Vincent, C. (2019). Modular invariants for genus 3 hyperelliptic curves. Research in Number Theory, SpringerOpen, 5(9). https://doi.org/10.1007/s40993-018-0146-6
Previous 1 2 3 4 5 6 7 8 ...113 Next

ID: 61696742