1. 2019
  2. You, J., Trager, S., & Wilkinson, M. H. F. (2019). A Fast, Memory-Efficient Alpha-Tree Algorithm using Flooding and Tree Size Estimation. In B. Burgeth , A. Kleefeld , B. Naegel , N. Passat , & B. Perret (Eds.), Mathematical Morphology and Its Applications to Signal and Image Processing (pp. 256-267). (Lecture Notes in Computer Science; Vol. 11564). Cham: Springer. https://doi.org/10.1007/978-3-030-20867-7_20
  3. Spenader, J., & Roest, C. (2019). Facilitating Quantifier Acquisition: Training Can Eliminate Children's Spreading Errors. In BUCLD 43: Proceedings of the 43rd annual Boston University Conference on Language Development edited by Megan M. Brown and Brady Dailey (Vol. 2, pp. 653-666). Boston, USA: Cascadilla Press.
  4. Remmerswaal, R., & Veldman, A. (2019). Numerical modeling of contact discontinuities in two-phase flow. In Computational Methods in Marine Engineering MARINE2019
  5. Veldman, A., Seubers, H., Hosseini Zahraei, S. M., Chang, X., Wellens, P. R., Plas, van der, P., & Helder, J. (2019). The ComMotion project: Computational methods for moving and deforming objects in extreme waves. In Computational Methods inMarine Engineering MARINE2019 International Centre for Numerical Methods in Engineering (CIMNE).
  6. Mohades Kasaei, H. (2019). Interactive Open-Ended Object, Affordance and Grasp Learning for Robotic Manipulation. In IEEE/RSJ International Conference on Robotics and Automation (ICRA) IEEE.
  7. Bakker, J., & Bunte, K. (2019). Efficient learning of email similarities for customer support. In M. Verleysen (Ed.), 27th European Symposium on Artificial Neural Networks, ESANN 2019 (pp. 119-124). d-side publishing.
  8. Biehl, M., Caticha, N., Opper, M., & Villmann, T. (2019). Statistical Physics of Learning and Inference. In M. Verleysen (Ed.), Proc. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning : ESANN 2019 Ciaco - i6doc.com.
  9. Biehl, M. (2019). Supervised Learning - An Introduction: Lectures given at the 30th Canary Islands Winter School of Astrophysics. (Machine Learning Reports; Vol. 01/2019). Mittweida, Germany: Machine Learning Reports.
  10. Blaauw, F., Overbeek, R., Albers, T., Vlek, J., Maessen, M., Gooijer, J., ... Lazovik, A. (2019). ECiDA: Evolutionary Changes in Data Analysis. Poster session presented at ICT.Open, Hilversum, Netherlands. https://doi.org/10.13140/RG.2.2.33143.47524
  11. Biehl, M., Abadi, F., Göpfert, C., & Hammer, B. (2019). Prototype-based classifiers in the presence of concept drift: A modelling framework. ArXiv e-prints, 1903.07273 (1903.07273 ), [1903.07273 ].
  12. van Beers, F., Lindström, A., Okafor, E., & Wiering, M. (2019). Deep Neural Networks with Intersection over Union Loss for Binary Image Segmentation. In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods (Vol. 1 ICPRAM, pp. 438-445). Prague: SciTePress. https://doi.org/10.5220/0007347504380445
  13. Ansó, N., Wiehe, A., Drugan, M., & Wiering, M. (2019). Deep Reinforcement Learning for Pellet Eating in Agar.io. In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (Vol. 2, ICAART, pp. 123-133). Prague: SciTePress. https://doi.org/10.5220/0007360901230133
  14. Wolf, B., & van Netten, S. (2019). Training submerged source detection for a 2D fluid flow sensor array with Extreme Learning Machines. In Eleventh International Conference on Machine Vision (ICMV 2018) (Vol. 11041, pp. 1104126). SPIE.Digital Library. https://doi.org/10.1117/12.2522667
Previous 1 2 3 4 5 6 7 8 ...115 Next

ID: 61696742